ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are transcriptionally co-regulated by ICRE (inositol/choline-responsive element) promoter motifs. Gene activation by an ICRE is mediated by binding of the Ino2/Ino4 transcription factor, whereas repression in the presence of high concentrations of inositol and choline (IC) requires an intact Opi1 repressor. However, the mechanism of specific repression and the functional interplay among these regulators remained unclear from previous work. Using in vivo as well as in vitro interaction assays, we show binding of the pleiotropic repressor Sin3 to the pathway-specific regulator Opi1. The paired amphipathic helix 1 (PAH1) within Sin3 and OSID (Opi1–Sin3 interaction domain) in the N-terminus of Opi1 were mapped as contact sites. The regulatory significance of the Opi1–Sin3 interaction was shown by the obvious deregulation of an ICRE-dependent reporter gene in a sin3 mutant. Opi1 also interacts with a newly identified functional domain of the transcriptional activator Ino2 (RID, repressor interaction domain). These results define the molecular composition of the transcription complex mediating control of ICRE-dependent genes and allow a hypothesis on the flow of regulatory information in response to phospholipid precursors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Structural genes of phospholipid biosynthesis in the yeast Saccharomyces cerevisiae are activated by the Ino2p/Ino4p transcription factor that binds to ICRE promoter motifs and mediates maximal gene expression in the absence of inositol. We identified the ino80 mutation causing inositol auxotrophy as a result of a defect in ICRE-dependent gene activation. The product of the corresponding wild-type gene INO80 (= YGL150C) shows significant similarity to the Snf2p family of DNA-dependent ATPases. Nevertheless, SNF2 in increased gene dosage did not suppress ino80 mutant phenotypes. Mutation of the Ino80p lysine residue corresponding to the NTP binding site of Snf2p led to a non-functional protein. In ino80 null mutants, gene activation mediated by an ICRE decreased to 16% of the wild-type level. Maximal expression of PHO5, GAL1, CYC1 and ICL1 was also significantly reduced. Thus, Ino80p affects several transcription factors involved in unrelated pathways. As demonstrated by gel filtration, Ino80p is part of a high-molecular-weight complex of more than 1 MDa. Similar to what was found for Snf2p, the Ino80p-containing complex may influence the transcriptional level of several unrelated structural genes by functioning as an ATPase that possibly acts on chromatin.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisiae, growth with a non-fermentable carbon source requires co-ordinate transcriptional activation of gluconeogenic structural genes by an upstream activation site (UAS) element, designated CSRE (carbon source-responsive element). The zinc cluster protein encoded by CAT8 is necessary for transcriptional derepression mediated by a CSRE. Expression of CAT8 as well as transcriptional activation by Cat8p is regulated by the carbon source, requiring a functional Cat1p (= Snf1p) protein kinase. The importance of both regulatory levels was investigated by construction of CAT8 variants with a constitutive transcriptional activation domain (INO2TAD) and/or a carbon source-independent promoter (MET25 ). Whereas a reporter gene driven by a CSRE-dependent synthetic minimal promoter showed a 40-fold derepression with wild-type CAT8, an almost constitutive expression was found with a MET25–CAT8–INO2TAD fusion construct due to a dramatically increased gene activation under conditions of glucose repression. Similar results were obtained with the mRNA of the isocitrate lyase gene ICL1 and at the level of ICL enzyme activity. Taking advantage of a Cat8p size variant, we demonstrate its binding to the CSRE. Our data show that carbon source-dependent transcriptional activation by Cat8p is the most important mechanism affecting the regulated expression of gluconeogenic structural genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The ACS1 gene, encoding one out of two acetyl-CoA synthetase isoenzymes of Saccharomyces cerevisiae, is strictly regulated at the transcriptional level by the carbon source of the medium. While ACS1 is poorly expressed in the presence of a high glucose concentration, a several hundred-fold derepression occurs with ethanol as the sole carbon source or under conditions of sugar limitation. The molecular mechanism responsible for the carbon source control of ACS1 turned out to be highly complex. A carbon source-responsive element (CSRE), previously identified upstream of gluconeogenic structural genes, and a binding site of the alcohol dehydrogenase regulator, Adr1p, together mediate about 80% of the derepressed gene activity. Binding of Adr1p synthesized by Escherichia coli to the ACS1 control region was shown by an electrophoretic mobility shift assay. In addition to these activating elements, two URS1 motifs confer negative control on the ACS1 promoter. The URS1 element was found to be a constitutive repression site, which is most effective from a downstream position with respect to an upstream activation site (UAS). In a mutant lacking the URS1-binding factor, Ume6p, ACS1 expression was partially glucose insensitive. Ume6p must counteract transcription factors that are constitutively active. Site-directed mutagenesis of Abf1p binding sites in the ACS1 promoter significantly reduced gene expression in the ume6 mutant, grown under repressing conditions. Thus, a functional balance of the pleiotropic positive factor Abf1p and the negative factor Ume6p is in part responsible for glucose repression of ACS1. The combined influence of the regulated UAS elements, CSRE and Adr1p binding site, mediates a strong increase in ACS1 expression under derepressing conditions.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Regulated expression of structural genes involved in yeast phospholipid biosynthesis is mediated by inositol/choline-responsive element (ICRE) upstream motifs, bound by the heterodimeric activator complex Ino2 + Ino4. Gene repression occurs in the presence of sufficient inositol and choline, requiring an intact Opi1 repressor which binds to Ino2. For a better understanding of interactions among regulators, we mapped an 18 aa repressor interaction domain (RID, aa 118–135) within Ino2 necessary and sufficient for binding by Opi1. By alanine scanning mutagenesis of the entire RID we were able to identify nine residues critical for Opi1-dependent repression of Ino2 function. Consequently, the corresponding dominant Ino2 variants conferred constitutive expression of an ICRE-dependent reporter gene and were no longer inhibited even by overproduction of Opi1. Interestingly, Ino2 RID partially overlaps with transcriptional activation domain TAD2. As certain mutations exclusively affect repression while others affect both repression and activation, both functions of Ino2 can be functionally uncoupled. Correspondingly, we mapped the RID–binding activator interaction domain (AID, aa 321–380) at the C-terminus of Opi1 and introduced missense mutations at selected positions. An Opi1 variant simultaneously mutated at three highly conserved positions showed complete loss of repressor function, confirming RID–AID interaction as the crucial step of regulated expression of ICRE-dependent genes.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: In the yeast Saccharomyces cerevisiae, genes involved in phospholipid biosynthesis are activated by ICRE (inositol/choline-responsive element) up-stream motifs and the corresponding heterodimeric binding factor, Ino2 + Ino4. Both Ino2 and Ino4 contain basic helix–loop–helix (bHLH) domains required for ICRE binding, whereas transcriptional activation is mediated exclusively by Ino2. In this work, we describe a molecular analysis of functional minimal domains responsible for specific DNA recognition and transcriptional activation (TAD1 and TAD2). We also define the importance of individual amino acids within the more important activation domain TAD1. Random mutagenesis at five amino acid positions showed the importance of acidic as well as hydrophobic residues within this minimal TAD. We also investigated the contribution of known general transcription factors and co-activators for Ino2-dependent gene activation. Although an ada5 single mutant and a gal11 paf1 double mutant were severely affected, a partial reduction in activation was found for gcn5 and srb2. Ino2 interacts physically with the basal transcription factor Sua7 (TFIIB of yeast). Interestingly, interaction is mediated by the HLH dimerization domain of Ino2 and by two non-overlapping domains within Sua7. Thus, Sua7 may compete with Ino4 for binding to the Ino2 activator, creating the possibility of positive and negative influence of Sua7 on ICRE-dependent gene expression.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    ISSN: 1432-0983
    Keywords: Mitochondria ; Ribosomal protein ; Nuclear gene ; pet mutant ; yeast
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract The Saccharomyces cerevisiae nuclear gene MRP-L6 was cloned by complementation of the respiratory-deficient mutant pet-ts 2523 with a library of wildtype yeast genomic DNA. The isolated gene was part of a 3.8-kb sequenced DNA fragment containing, in addition to MRP-L6, two unassigned reading frames, ORF1 and ORF2. MRP-L6 codes for a basic protein of 205 amino acids and a molecular mass of 22.8 kDa. The protein exhibits significant sequence similarity to the ribosomal protein L6 of bacteria and chloroplasts. Unlike the corresponding bacterial proteins, however, the MRP-L6 protein (MRP-L6p) contains at its N-terminus a 16 amino-acid leader sequence exhibiting the known characteristics of mitochondrial import signals. Disruption of MRP-L6 leads to the phenotype of a mitochondrial translation-defective, rho-negative yeast mutant. The results are consistent with MRP-L6p representing an essential component of yeast mitochondrial ribosomes. Expression of MRP-L6 was examined, under conditions of glucose repression and derepression, in wild-type cells and in a series of catabolite repression-defective yeast mutants. In most cases, a distinct though small influence of the carbon source on the expression of an MRP-L6/lacZ reporter construct was observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1617-4623
    Keywords: Glucose repression ; Glucose derepression ; Regulatory genes ; Expression analysis ; Saccharomyces cerevisiae
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Yeast strains carrying one of the two regulatory mutations cat1 and cat3 are defectve in derepression of several glucose-repressible enzymes that are necessary for utilizing non-fermentable carbon sources. Hence, these strains fail to grow on ethanol, glycerol or acetate. The synthesis of isocitrate lyase, malate synthase, malate dehydrogenase and fructose-1,6-bisphosphatase is strongly affected in cat1 and cat3 strains. Genes CAT1 and CAT3 have been isolated by complementation of the cognate, mutations after transformation with an episomal plasmid gene library. The restriction map of CAT1 proved its allelism to the earlier isolated SNF1 gene. Both genes appear to exist as single-copy genes per haploid genome as indicated by Southern hybridization. Northern analysis has shown that the 1.35 kb CAT3 mRNA is constitutively expressed, independent of the carbon source in the medium. Derepression studies with CAT3 transformants using a multi-copy plasmid showed over-expression of glyoxylate cycle enzymes. This result would be consistent with a direct effector function for the CAT3 gene product.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-07-21
    Print ISSN: 0172-8083
    Electronic ISSN: 1432-0983
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2017-02-07
    Print ISSN: 0172-8083
    Electronic ISSN: 1432-0983
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...