ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-11-13
    Description: In a global change context, the intensity and the frequency of drastic low flow periods or drought events will most likely increase to a substantial extent over the coming decades, leading to a modification of the abiotic characteristics of wetlands. This change in environmental parameters may induce severe shifts in plant and animal communities and the functioning of ecosystems. In this study, we experimentally estimated the effect of drought and the accumulation of ammonia (NH 3 ) on the feeding activities of three generalist macroinvertebrates (i.e., Gammarus pulex , Gammarus roeselii and Asellus aquaticus ) on three types of organic matter: leaves of Berula erecta growing in submerged conditions, leaves of the same species growing in emerged conditions, and dead leaves of Alnus glutinosa . We observed a modification of the biomechanical and stoichiometric characteristics of the plants as a result of the emersion of the aquatic plants. This shift produced a substantial decrease in organic matter recycling by invertebrates and in their associated physiological ability (i.e., the energy stores of the animals) to face conditions associated with environmental change. Moreover, the accumulation of NH 3 amplified the negative effect of emersion. This snowball effect on invertebrates may profoundly modify the functioning of ecosystems, particularly in terms of organic matter production/degradation and carbon mineralisation. © 2012 Blackwell Publishing Ltd
    Print ISSN: 1354-1013
    Electronic ISSN: 1365-2486
    Topics: Biology , Energy, Environment Protection, Nuclear Power Engineering , Geography
    Published by Wiley
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Abstract Interactions between biological and physical processes, so‐called bio‐physical feedbacks, are important for landscape evolution. While these feedbacks have been quantified for isolated patches of vegetation in aquatic ecosystems, we still lack knowledge of how the location of one patch affects the occurrence of others. To test for patterns in the spatial distribution of vegetation patches in streams, we first measured the distance between Callitriche platycarpa patches using aerial images. Then, we measured the effects of varying patch separation distance on flow velocity, turbulence, and drag on plants in a field manipulation experiment. Lastly, we investigated whether these patterns of patch alignment developed over time following locations of reduced hydrodynamic forces, using 2‐yr field observations of the temporal patch dynamics of Ranunculus penicillatus in a lowland chalk stream. Our results suggest that vegetation patches in streams organize themselves in V‐like shapes to reduce drag forces, creating an optimal configuration that decreases hydrodynamic forces and may therefore encourage patch growth. Downstream patches are more frequently found at the rear and slightly overlapping the upstream patch, in locations that are partially sheltered by the established upstream vegetation while ensuring exposure to incoming flow (important for nutrient availability). Observations of macrophyte patch dynamics over time indicated that neighboring patches tend to grow in a slightly angled line, producing a spatial pattern resembling the V‐formation in migratory birds. These findings point to the general role of bio‐physical interactions in shaping how organisms align themselves spatially to aerodynamic and hydrodynamic flows at a range of scales.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-11-17
    Description: Questions The effect of dewatering on aquatic plant communities may vary with sediment properties, such as particle size and organic matter content, as both control water retention in the sediment during dewatering. No study has tested how sediment type affects the short-term response of plant communities to dewatering. We hypothesized that for the same dewatering event: (1) organic, silt and coarse sediments rank along a gradient of water deficit, with which community resistance and resilience decrease; (2) species survival during the event depend on their known ecological affinity for water; and (3) a peak in species richness associated with an intermediate water deficit occurs in silty habitats. Location Riverine wetlands in the floodplain of the Ain River, France. Methods Eighteen sampling units were defined, set over three sediment types: gravel-dominated coarse sediment, silt and organic matter-dominated sediment. For each sediment type, three sampling units were permanently aquatic, and three sampling units underwent summer dewatering. A survey of species cover was conducted in each sampling unit at four times: before summer dewatering, at the beginning of the event, at the end of the event and 2 months after rewetting. Community resistance and resilience were assessed, as were changes over time in the proportions of species according their water affinity (hydrophytes, amphiphytes and helophytes, documented from the floras), and the effect of dewatering on species renewal and richness. Results The sediment type affected aquatic plant community resistance and resilience, with increasing disturbance intensity for silty, followed by coarse compared with organic sediment. Organic sediment retained water efficiently during dewatering, supporting high community resistance, with the maintenance of amphiphytes and more tolerant hydrophytes. On silty sediment, disturbance was sufficiently high to cause the disappearance of hydrophyte vegetative parts, but propagules rapidly sprouted after rewetting, suggesting their preservation in the sediment and enabling good community resilience. On coarse sediment, a decrease in resident amphiphyte abundance, together with helophyte colonization and maintenance after rewetting were observed. Coarse sediment is not favourable to propagule survival, explaining the low community resilience. Contrary to our hypothesis, a linear positive relationship between disturbance intensity and species richness was observed after dewatering. Conclusion The present study demonstrates that a simple description of sediment type allows prediction of dewatering impact on aquatic plant communities: organic, silt and coarse sediments were ranked along a gradient of water deficit, along which resistance and resilience decreased. We examined aquatic plant community responses to dewatering according to sediment water retention capacities. Organic, silt and coarse sediments ranked along a gradient of water deficit, along which resistance and resilience decreased. Species survival during dewatering event depends on their known ecological affinity for water. A linear positive relationship between the disturbance intensity and species richness was observed after dewatering.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-10-11
    Description: Tidal marsh vegetation is increasingly valued for its role in ecosystem-based coastal protection due to its wave dissipating capacity. As the efficiency of wave dissipation is known to depend on specific vegetation properties, we quantified how these morphological, biochemical, and biomechanical properties of tidal marsh vegetation are, in turn, affected by wave exposure. This was achieved by field measurements at two locations, with contrasting wave exposure, in the brackish part of the Scheldt Estuary (SW Netherlands), where Scirpus maritimus is the dominant pioneer species. Our results show that shoots from more wave-exposed conditions developed significantly shorter and thicker stems than the ones growing in more sheltered conditions. Furthermore, we show that the more exposed shoots are more flexible whereas the shoots growing in more sheltered conditions are stiffer. This may indicate plasticity in response to wave exposure following a stress-avoidance strategy. Increasing stiffness was shown to be related to enhanced biogenic silica and lignin contents of the shoot tissue. These properties might affect the wave-attenuating capacity of the marsh as stiff plants are known to mitigate waves more effectively than flexible ones. However, we also found higher shoot densities on the exposed site, which may partly explain why higher relative wave attenuation rates were found on the exposed site, despite the presence of more flexible individual shoots. This study highlights that the efficiency of wave attenuation by tidal marsh vegetation ultimately depends on mutual interactions between waves and plasticity in morphological, biochemical, and biomechanical plant properties.
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2018-02-14
    Description: Spatial heterogeneity plays a crucial role in the coexistence of species. Despite recognition of the importance of self-organization in creating environmental heterogeneity in otherwise uniform landscapes, the effects of such self-organized pattern formation in promoting coexistence through facilitation are still unknown. In this study, we investigated the effects of pattern formation on species interactions and community spatial structure in ecosystems with limited underlying environmental heterogeneity, using self-organized patchiness of the aquatic macrophyte Callitriche platycarpa in streams as a model system. Our theoretical model predicted that pattern formation in aquatic vegetation – due to feedback interactions between plant growth, water flow and sedimentation processes – could promote species coexistence, by creating heterogeneous flow conditions inside and around the plant patches. The spatial plant patterns predicted by our model agreed with field observations at the reach scale in naturally vegetated rivers, where we found a significant spatial aggregation of two macrophyte species around C. platycarpa . Field transplantation experiments showed that C. platycarpa had a positive effect on the growth of both beneficiary species, and the intensity of this facilitative effect was correlated with the heterogeneous hydrodynamic conditions created within and around C. platycarpa patches. Our results emphasize the importance of self-organized patchiness in promoting species coexistence by creating a landscape of facilitation, where new niches and facilitative effects arise in different locations. Understanding the interplay between competition and facilitation is therefore essential for successful management of biodiversity in many ecosystems. This article is protected by copyright. All rights reserved.
    Print ISSN: 0012-9658
    Electronic ISSN: 1939-9170
    Topics: Biology
    Published by Wiley on behalf of The Ecological Society of America (ESA).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2017-01-20
    Description: Aims Landscape fragmentation exhibits strong negative consequences on biodiversity. In networks of linear elements, connectivity loss results in a decreased length of connected elements and increased potential barriers, directly impacting the ability of plants to disperse. However, species vary in their tolerance to connectivity loss, likely due to differences in dispersal strategies. We investigated whether species tolerance to decreased ditch network connectivity is determined by seed traits. We selected as a case study, water-dispersed plant species in a ditch network. Location Ditch network established in an intensive agricultural area in northern France. Methods We selected 27 sites of 500 x 500 m, where we calculated connectivity indices based on the length of connected ditches, intersection and culvert number. For each parameter, we calculated plant tolerance levels by analysing species changes in occurrence in response to change in connectivity values. Concurrently, we measured in laboratory conditions five seed traits involved in plant movement and establishment in standing aquatic systems and analysed their explanatory power in plant tolerance to fragmentation. Results All traits were significantly related to at least one component of ditch network connectivity. We interpreted the following two strategies in plant tolerance to connectivity loss from the results: (1) in networks where the connected network length was short plants displayed short-distance dispersal with less efficient sexual reproduction, probably in favour of local vegetative multiplication; and (2) in networks with a high density of culverts or intersections, plants displayed seeds with reduced local retention, where seeds had the capacity to overcome long and frequent trapping events. In highly branched networks, plants exhibited also higher germination rates, promoting seed establishment when trapped along the banks. Seed capacity to be dispersed by wind at the water surface was only a marginal factor in plant tolerance to fragmentation. Conclusions Connectivity loss acted as a filter on species seed traits. The results of our study offer an enhanced understanding of plant dispersal in fragmented standing aquatic networks and emphasise the importance of developing functional approaches in landscape studies. This article is protected by copyright. All rights reserved.
    Print ISSN: 1100-9233
    Electronic ISSN: 1654-1103
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2024-04-05
    Description: During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.During the 1970s, renewed interest in plant mechanical signaling led to the discovery that plants subjected to mechanical stimulation develop shorter and thicker axes than undisturbed plants, a syndrome called thigmomorphogenesis. Currently, mechanosensing is being intensively studied because of its involvement in many physiological processes in plants and particularly in the control of plant morphogenesis. From an ecological point of view, the shaping of plant architecture has to be precisely organized in space to ensure light capture as well as mechanical stability. In natural environments terrestrial plants are subjected to mechanical stimulation mainly due to wind, but also due to precipitation, while aquatic and marine plants are subjected to current and wave energy. Plants acclimate to mechanically challenging environments by sensing mechanical stimulations and modifying their growth in length and diameter and their tissue properties to reduce potential for buckling or breakage. From a morphogenetic point of view, both external and internal mechanical cues play an important role in the control of cell division and meristem development likely by modulating microtubule orientation. How mechanical stimulations are being sensed by plants is an area of intense research. Different types of mechanosensors have been discovered or proposed, including ion channels gated by membrane tension (stretch activation) and plasma membrane receptor-like kinases that monitor the cell wall deformations. Electrophysiologists have measured the conductances of some stretch-activated channels and have showed that SAC of different structures can exhibit different conductances. The role of these differences in conductance has not yet been established. Once a mechanical stimulus has been perceived, it must be converted into a biological signal that can lead to variations of plant phenotype. Calcium has been shown to function as an early second messenger, tightly linked with changes in cytosolic and apoplastic pH. Transcriptional analyses of the effect of mechanical stimulation have revealed a considerable number of differentially expressed genes, some of which appear to be specific to mechanical signal transduction. These genes can thus serve as markers of mechanosensing, for example, in studies attempting to define signalling threshold, or variations of mechanosensitivity (accommodation). Quantitative biomechanical studies have lead to a model of mechanoperception which links mechanical state and plant responses, and provides an integrative tool to study the regulation of mechanosensing. This model includes parameters (sensitivity and threshold) that can be estimated experimentally. It has also been shown that plants are desensitized when exposed to multiple mechanical signals as a function of their mechanical history. Finally, mechanosensing is also involved in osmoregulation or cell expansion. The links between these different processes involving mechanical signalling need further investigation. This frontier research topic provides an overview of the different aspects of mechanical signaling in plants, spanning perception, effects on plant growth and morphogenesis, and broad ecological significance.
    Keywords: QK1-989 ; Q1-390 ; Growth ; acclimation ; Perception ; Mechanical signals ; thigmomorphognesis ; thema EDItEUR::P Mathematics and Science::PS Biology, life sciences::PST Botany and plant sciences
    Language: English
    Format: image/jpeg
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2015-05-05
    Print ISSN: 0277-5212
    Electronic ISSN: 1943-6246
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2010-09-08
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-04-12
    Print ISSN: 1015-1621
    Electronic ISSN: 1420-9055
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...