ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2018-11-29
    Description: Background: Chromosome 14q32 rearrangements involving the immunoglobulin heavy chain gene (IGH) affect less than 5% of chronic lymphocytic leukemia (CLL) patients. Their clinical course is aggressive and the outcome, worse than other CLL subtypes (Cavazzini et al, 2008; Gerrie et al, 2012). However, the biology of CLL showing IGH rearrangements (CLL-IGHR) is not completely defined. The identification of novel recurrent mutations in CLL by next generation-sequencing (NGS) has offered a more comprehensive view into the genomic landscape of the disease and improved the prognostication of CLL. Thus, mutational analysis might be especially useful in those patients with uncertain prognosis, such as those carrying IGH rearrangements. Aim: To analyze the mutational profile of CLL-IGHR patients by targeted NGS in order to improve our understanding of the genetic underpinnings of this subgroup. Methods: The study was based on 899 CLL patients, well characterized at cytogenetic, biological and clinical level, forty-two of them (4.7%) showing IGH rearrangements. Targeted NGS was performed in 231 CLL samples: 117 with 13q deletion, 27 with 11q deletion, 26 trisomy 12, 42 showing IGH rearrangements and the remaining 19 without any cytogenetic alteration. CD19+ B cells were isolated and DNA extracted. SureSelectQXT targeted enrichment technology and a custom-designed panel (MiSeq, Illumina), including 54 CLL-related and recurrent mutated genes, was carried out. The panel yielded 100x or greater coverage on 97% of the genomic regions of interest and the mean coverage obtained was 600x. Mutations were detected down to 3% allele frequency. Results: The mutational analysis of CLL-IGHR patients identified a total of 72 mutations in 32 genes. Seventy-one percent of patients (30/42) harbored at least one mutation. The most frequently mutated genes in this cohort were NOTCH1 (28.6%), POT1 (14.3%), TP53 (9.5%), SF3B1 (7%), BRAF (7%), EGR2 (7%), IGLL5 (7%) and MGA (7%), followed by BCL2, HIST1H1E and FBXW7 (4.8%), uncommonly mutated genes in CLL at these frequencies (Table 1). In fact, mutations in NOTCH1, BRAF, EGR2, BCL2, HIST1H1E and FBXW7 were significantly associated with CLL-IGHR patients (p=0.013, p=0.003, p=0.021, p=0.038, p=0.038 and p=0.021 respectively). In terms of time to the first therapy (TFT), CLL-IGHR had an intermediate-negative impact (median TFT=24 months) compared to the presence of cytogenetic alterations associated with good prognosis such as 13q deletions (median TFT〉120 months; p
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-11-29
    Description: Myelodysplastic syndromes (MDS) and chronic myelomonocytic leukemia (CMML) are hematological disorders at high risk of progression to acute myeloid leukemia (sAML). Previous high-throughput sequencing studies have provided insight into the mutational dynamics and clonal evolution underlying disease progression. However, large serial sequencing studies are still required to define which type of mutations alone or in combination contribute to leukemic transformation. To assess the mutational profiles and mutational dynamics underlying progression from MDS to sAML, a targeted-deep sequencing (TDS) of 117 MDS/AML related-genes was performed in 110 bone marrow serial samples from 50 MDS/CMML patients who evolved to sAML and 5 patients who did not evolved (controls), at two different time-points: at the time of diagnosis and at sAML progression or after a median of 3 year follow-up, respectively. A total of 269 mutations in 57 different genes were identified at second sampling. At diagnosis, all patients, progressing and not progressing (controls), presented similar number of mutations (p=0.15). Moreover, patients evolving to sAML were then divided by FAB/WHO subtypes at diagnosis (CMML, low-risk and high-risk MDS subgroups) and no differences were observed in the number of mutations (p=0.71) and variant allele frequency (VAF) between each group (p=0.63). It should be noted that mutations in the splicing pathway were significantly more frequent in low-risk MDS patients (89% low-risk MDS vs. 56% high risk MDS, p=0.038). However, after progression, those patients who evolved to sAML displayed a statistically significant increase of mutations (p=0.001) at the leukemic phase, while controls did not at the follow-up sample (p=0.88). This higher number of mutations at second sampling in patients who evolved to sAML, independently of their diagnostic subtype, may be indicative of a higher genomic instability during disease evolution. To study the mutational dynamics and what mutations could be important during disease evolution, the VAFs of mutations detected at both time-points in each patient of transformation cohort were compared. We observed that some mutations identified at the sAML stage (163 mutations) were already present at the MDS stage, at clonal or subclonal levels, and were retained during evolution, for example in genes such as SRSF2 and DNMT3A. However, 106 mutations increased in clonal size or were newly acquired. Interestingly, most of mutations in Ras signaling pathway showed a same pattern: they were not present at time of diagnosis and appeared at sAML. In fact, mutations in this pathway were detected in 25 of 50 patients (50%) included in this cohort and in 22 of them (88%) mutations displayed this dynamic. Therefore, in this study, Ras signaling was the most common pathway involved in the progression from MDS to sAML. Of note, 9 of these patients (18% of the whole cohort) presented, independently of diagnosis, a co-occurring cohesin mutation, that was already present at diagnosis and, in most cases, markedly increased in clonal size at sAML. Thus, the combination of mutations in these two pathways could play an important role during disease evolution. In addition, 22 of 50 patients were treated with a disease-modifying agent (18 azacytidine and 4 lenalidomide) before they progressed to sAML, while the remaining 28 patients received no treatment or supportive care and were considered as non-treated. Thus, we studied the effect of disease-modifying therapy on mutational dynamics in this cohort of patients progressing to sAML. In the treated patients, a higher proportion of newly acquired or increasing mutations at sAML in chromatin modifiers was observed, while in non-treated patients most mutations remained stable (61% vs. 28.6%, p=0.013). By contrast, regarding treatment, no differences were detected in the mutational dynamics of cohesin (p=0.56) or Ras pathway (p=1.00). MDS progression to sAML was characterized by a higher genomic instability, independently of MDS subtypes of patients at diagnosis. Ras signaling was the most frequent affected pathway during disease evolution in this cohort and, interestingly, the co-occurrence of Ras signaling and cohesin mutations could play an important role in the progression. Moreover, mutations in chromatin modifiers genes could be related to the evolution of patients who received disease-modifying treatment before progression to sAML. Disclosures Olivier: Celgene: Honoraria; Jassen: Honoraria. Díez-Campelo:Novartis: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene: Consultancy, Honoraria, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-11-05
    Description: Introduction: Lenalidomide is a potent drug with pleiotropic effects in patients with myelodysplastic syndrome (MDS) with deletion of the long arm of chromosome 5 [del(5q)]. The clinical efficacy of lenalidomide in MDS patients has been extensively reviewed and although the mechanisms of action in del(5q) clone have been previously described, in vivo sequential studies of modulatory effect on T lymphocytes are lacking. Our study was conducted in patients included in the Sintra-REV Clinical Trial: Lenalidomide (Revlimid) phase III, multicenter, randomized, double-blind study versus placebo in patients with low-risk MDS (low and intermediate IPSS-1) with del(5q), with anemia (HB≤12gr/dl) and without transfusion needs. Aim: The aim of this study was to explore the effect of lenalidomide in T-lymphocytes in MDS patients with del(5q) and without transfusion dependence. Materials and Methods: Sequential study was carried out in 26 samples from 13 paired MDS patients with del (5q). Seven out 13 were treated with lenalidomide and achieved a major erythroid and cytogenetic response. Peripheral blood (PB) samples were collected before and one month after treatment in treated-patients and at the same time points for non-treated patients. CD3+ cells were collected from PB samples and total RNA was isolated. SureSelect Strand Specific RNA library (Agilent Technologies) was applied to study changes in RNA levels. Raw reads were aligned against the Human genome GRCh37 using the STAR aligner. Counts were assigned to Ensembl gene IDs through HTseq using its UNION version. Differential gene expression was determined with DESeq2, considering as statistically significant those genes with FDR 〈 0.05. Pathway over-representation analysis (ORA) was conducted in the Webgestalt suite. Results: 332 genes were differentially expressed in CD3+ lymphocytes one month after lenalidomide treatment in our cohort of patients; 199 of them were over-expressed after the administration of this drug (Fig 1a). Of note, none of them were observed in non-treated patients after one month. The ORA revealed significant differences in the gene expression profile of sixteen cytokines and enrichment of genes of the cell cycle pathway (35 genes). The most relevant up-regulated cytokines were: IL10, TNFSF10, IFNGand IL6. These data explain lenalidomide-induced activation of an antileukemic immune response and secretion of anti-inflammatory cytokines. Although lenalidomide has been reported to reduce the expression of IL6 secreted by myeloid cell derived from MDS clon, we have observed upregulation of this gene in T-lymphocytes. Moreover, our study showed a downregulation of MBP6 that may help to correct the anemia and also attenuate inflammation signaling in MDS patients with del(5q) (Fig 1b). In addition, the most represented up-regulated genes related to cell cycle pathway were: cyclines (CCNB1, CCNB2, CDK1), centromere genes (CENPE, CENPM, CENPU), kinesin family members (KIF18A, KIF23, KIF2C), BUB1 mitotic checkpoint genes (BUB1, BUB1B), and genes involved in cell division (CDC6, CDC7,CDC25A). It has been described that lenalidomide inhibits CDC25A selectively in the del(5q) clone resulting in G2/M arrest and apoptosis. By contrast, our study showed that this gene was upregulated in T-lymphocytes promoting cell cycle and proliferation of these cells (Fig 1b). Conclusions: The immunomodulatory properties of lenalidomide can be summarized in two: a) regulation of antileukemic and anti-inflammatory cytokines production, b) activation of cell cycle and proliferation in T cells. To our knowledge, this is the first report describing RNA expression profiles in PB CD3+ lymphocytes collected from lenalidomide-treated del(5q) patients, contributing to overall understanding of lenalidomide action. Disclosures Sanz: Abbvie Pharmaceuticals: Membership on an entity's Board of Directors or advisory committees; LaHoffman Roche Ltd.: Membership on an entity's Board of Directors or advisory committees; Takeda Pharmaceutical Ltd.: Membership on an entity's Board of Directors or advisory committees; Helsinn: Membership on an entity's Board of Directors or advisory committees. Fenaux:Abbvie: Honoraria, Research Funding; Novartis: Honoraria, Research Funding; Jazz: Honoraria, Research Funding; BMS: Honoraria, Research Funding. Diez-Campelo:Novartis: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Takeda: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau; Celgene-BMS: Consultancy, Membership on an entity's Board of Directors or advisory committees, Research Funding, Speakers Bureau. OffLabel Disclosure: Lenalidomide was administered in anemic but not transfusion-dependence patients with low-risk MDS and del(5q)
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2020-11-05
    Description: Large-scale next-generation sequencing (NGS) studies have suggested common patterns of co-occurrence or mutual exclusivity between genetic alterations in chronic lymphocytic leukemia (CLL). However, little is known about how most of these alterations cooperate to drive CLL pathogenesis, as well as the impact of these concurrencies in clinical outcome. In this regard, we investigated the clinical and biological impact of the co-occurrence of high-risk lesions such as del(11q)/ATM mutation and del(17p)/TP53 mutation by integrating NGS and CRISPR/Cas9 approaches. To address these questions, we first analyzed the mutational profile of 271 CLLs (17.3% del(11q); 10.7% del(17p)). The most frequently mutated genes were NOTCH1 (20%), TP53 (14%), SF3B1 (11%) and ATM (10%). Within del(11q), 32% showed TP53 alterations (53% biallelic; 47% monoallelic). Interestingly, patients harboring combined del(11q) and TP53 alterations by either mutation or deletion (del(11q) TP53ALT) exhibited significantly shorter overall survival (OS) than del(11q) CLLs without TP53 alterations (del(11q) TP53WT) and those TP53 altered without del(11q) (no del(11q) TP53ALT) (median 17 vs. 88, 36 months; P=0.0004, P=0.02). Conversely, we observed a significant lack of ATM mutations in CLLs with biallelic TP53 alterations (P=0.002) and a mutual exclusivity between biallelic TP53 and biallelic ATM losses (P=0.03)(Fig 1A). Based on the NGS results, we next used the CRISPR/Cas9 system to model monoallelic and biallelic ATM and TP53 loss in vitro. We generated isogenic HG3-Cas9 CLL-derived cell lines harboring monoallelic del(11q) (targeting 11q22.1/11q23.3 regions) and further loss-of-function mutations in ATM and/or TP53 to mimic all the possible combinations observed in our CLL cohort. By proliferation assays, we noted that the introduction of TP53 mutations increased the proliferation rates in both HG3WT and HG3-del(11q) cells. In contrast, the introduction of an ATM truncating mutation on the remaining allele of the HG3-del(11q) TP53MUT clone, suppressed this proliferative advantage, with growth rates comparable to those of HG3-del(11q). Accordingly, DNA content analysis by propidium iodide revealed that cells harboring biallelic ATM and TP53 loss also showed mitotic and cell cycle defects. To further evaluate the implications of these alterations in the clonal dynamics of CLL in vivo, we performed fluorescence-based clonal competition experiments by injecting these edited cell lines intravenously into NGS mice. First, we observed that HG3-TP53MUT cells outgrew HG3WT cells in spleen of xenotransplanted mice 14 days after injection (P
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...