ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Publication Date: 2019-07-21
    Print ISSN: 0021-9606
    Electronic ISSN: 1089-7690
    Topics: Chemistry and Pharmacology , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-07-30
    Description: Knowledge of the microscopic structure of fluids and changes thereof with pressure and temperature is important for the understanding of chemistry and geochemical processes. In this work we investigate the influence of sodium chloride on the hydrogen-bond network in aqueous solution up to supercritical conditions. A combination of in situ X-ray Raman scattering and ab initio molecular dynamics simulations is used to probe the oxygen K-edge of the alkali halide aqueous solution in order to obtain unique information about the oxygen's local coordination around the ions, e.g. solvation-shell structure and the influence of ion pairing. The measured spectra exhibit systematic temperature dependent changes, which are entirely reproduced by calculations on the basis of structural snapshots obtained via ab initio molecular dynamics simulations. Analysis of the simulated trajectories allowed us to extract detailed structural information. This combined analysis reveals a net destabilizing effect of the dissolved ions which is reduced with rising temperature. The observed increased formation of contact ion pairs and occurrence of larger polyatomic clusters at higher temperatures can be identified as a driving force behind the increasing structural similarity between the salt solution and pure water at elevated temperatures and pressures with drawback on the role of hydrogen bonding in the hot fluid. We discuss our findings in view of recent results on hot NaOH and HCl aqueous fluids and emphasize the importance of ion pairing in the interpretation of the microscopic structure of water.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2022-06-09
    Description: Iron-bearing carbonates play an important role in Earth’s carbon cycle. Owing to their stability at mantle conditions, recently discovered iron carbonates with tetrahedrally coordinated carbon atoms are candidates for carbon storage in the deep Earth. The carbonates’ iron oxidation and spin state at extreme pressure and temperature conditions contribute to the redox conditions and element partitioning in the deep mantle. By laser heating FeCO3 at pressures of about 83 GPa, Fe3+4C3O12 and Fe2+2Fe3+2C4O13 were synthesized and then investigated by x-ray emission spectroscopy to elucidate their spin state, both in situ and temperature quenched. Our experimental results show both phases in a high-spin state at all pressures and over the entire temperature range investigated, i.e., up to 3000 K. The spin state is conserved after temperature quenching. A formation path is favored where Fe3+4C3O12 forms first and then reacts to Fe 2+2Fe3+2C4O13, most likely accompanied by the formation of oxides. Density functional theory calculations of Fe2+2Fe3+2C4O13 at 80 GPa confirm the experimental findings with both ferric and ferrous iron in high-spin state with antiferromagnetic order at 80 GPa. As the intercrystalline cation partitioning between the Fe-bearing carbonates and the surrounding perovskite and ferropericlase depends on the spin state of the iron, an understanding of the redox conditions prevalent in subducted slab regions in the lower mantle has to take the latter into account. Especially, Fe2+2Fe3+2C4O13 may play a key role in subducted material in the lower mantle, potentially with a similar role as silicate perovskite.
    Language: English
    Type: info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2023-01-30
    Description: The determination of the spin state of iron-bearing compounds at high pressure and temperature is crucial for our understanding of chemical and physical properties of the deep Earth. Studies on the relationship between the coordination of iron and its electronic spin structure in iron-bearing oxides, silicates, carbonates, iron alloys, and other minerals found in the Earth’s mantle and core are scarce because of the technical challenges to simultaneously probe the sample at high pressures and temperatures. We used the unique properties of a pulsed and highly brilliant x-ray free electron laser (XFEL) beam at the High Energy Density (HED) instrument of the European XFEL to x-ray heat and probe samples contained in a diamond anvil cell. We heated and probed with the same x-ray pulse train and simultaneously measured x-ray emission and x-ray diffraction of an FeCO3 sample at a pressure of 51 GPa with up to melting temperatures. We collected spin state sensitive Fe Kβ1,3 fluorescence spectra and detected the sample’s structural changes via diffraction, observing the inverse volume collapse across the spin transition. During x-ray heating, the carbonate transforms into orthorhombic Fe4C3O12 and iron oxides. Incipient melting was also observed. This approach to collect information about the electronic state and structural changes from samples contained in a diamond anvil cell at melting temperatures and above will considerably improve our understanding of the structure and dynamics of planetary and exoplanetary interiors.
    Language: English
    Type: info:eu-repo/semantics/article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...