ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Publication Date: 2019-07-17
    Description: In this paper, we revisit the acoustics education program using mobile devices to better understand urban environments. We begin with a summary of our past projects to demonstrate a model case of the concept. In these projects, the output was mainly supposed to be a noise map with measured sound pressure levels (SPLs) and sound spectra. This methodology can obviously be applied to larger-scale urban studies. Including measured sound spectra can be another advantage. Next, current problems in measurement accuracy due to recent device developments are explained and the required examinations are stated. Finally, the accuracy of the current versions of the applications as well as recently available devices are discussed. The results of this study provide information regarding the measurement accuracy of mobile devices, and some suggestions for their practical use are given, which are also useful for additional studies pertaining to the urban acoustic environment.
    Electronic ISSN: 2413-8851
    Topics: Architecture, Civil Engineering, Surveying
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-08-14
    Description: In this study, we discuss the effect of the manufacturing accuracy of a microperforated panel (MPP) produced by 3D printers on acoustic properties through measured and calculated results as a pilot study. The manufacturing costs of MPPs have long been one of their shortcomings; however, with recent developments in the manufacturing process, low-cost MPPs are now available. In a further attempt at reducing the cost, 3D printing techniques have recently been considered. Cases of trial production of MPPs manufactured by 3D printing have been reported. When introducing such new techniques, despite the conventional microdrill procedure, manufacturing accuracy can often become an issue. However, there are few studies reporting the effect of manufacturing accuracy on the acoustic properties in the case of 3D-printed MPPs. Considering this situation, in this pilot study, we attempted to produce MPPs with circular and rectangular perforations using a consumer 3D printer of the additive manufacturing type. The hole sizes of the specimens were measured, and the accuracy was evaluated. The normal incidence absorption coefficient and specific impedance were measured using an impedance tube. The measured results were compared with the theoretical values using Guo’s model. Through these basic studies, the MPPs produced by an additive manufacturing 3D printer demonstrated good sound absorption performance; however, due to the large deviations of parameters, the agreement with the theoretical values was not good, which suggests that it is difficult to predict the acoustic properties of MPPs made by a consumer-grade additive manufacturing 3D printer.
    Electronic ISSN: 2624-599X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2020-08-13
    Description: Technological advances in materials science, manufacturing processes, chemistry and nanoscience have led to enormous developments in innovatively engineered materials over recent decades. Among them, sustainable acoustic materials have helped to improve acoustical comfort in built environments, and their use is rapidly growing in the architecture, automotive, aerospace and construction industries. These materials are manufactured through a responsible interaction with the environment in order to avoid a depletion or degradation of the natural resources, and to allow for long-term environmental quality. This Special Issue reports on some research studies on membrane absorbers and fibrous materials of natural origin that can be sustainable alternatives to traditional acoustic materials.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-12-09
    Description: Geo-referenced sound data are often used in the field of acoustics education to learn about the urban acoustic environment. Simple soundwalks and sound collections are also employed, in which acquiring additional information such as visual data, recorded sound data, and GPS location data are helpful to produce a map with sound data and sound collection and to carry out more profound discussions in educational activities. In order to enrich these acoustic educational and environmental survey activities with a simple tool, the use of multifunctional sound-pressure level (SPL) measurement applications with mobile devices are proposed. Some experiences of combined activities of the above methods using the applications and mobile devices are reported in this paper. In this study, applications for SPL measurements, which record GPS location data, sound, photo, and video during measurements, were used to produce geo-referenced sound data. First, the accuracy of the applications was checked and we found them to have reasonable accuracy when used with iOS devices; for example, the averaged error was less than 1.5 dB(A) with iPhone XS. Next, they were actually used in a simple soundwalk-like field survey and the resulting geo-referenced sound data were presented to discuss the merits and demerits of each application. Overall, the applications used in this work were found to be useful; for example, recorded sound allowed us to check the main sound source and to carry out discussions using collected sound samples later, and photos and videos allowed us to grasp the impressions and situations around the measuring points. Therefore, these multifunctional sound level meter (SLM) applications can be effectively used for various purposes, including acoustics education for learning about urban acoustic environments.
    Electronic ISSN: 2413-8851
    Topics: Architecture, Civil Engineering, Surveying
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-05-28
    Description: This paper presents a proposal of a time domain room acoustic solver using novel fourth-order accurate explicit time domain finite element method (TD-FEM), with demonstration of its applicability for practical room acoustic problems. Although time domain wave acoustic methods have been extremely attractive in recent years as room acoustic design tools, a computationally efficient solver is demanded to reduce their overly large computational costs for practical applications. Earlier, the authors proposed an efficient room acoustic solver using explicit TD-FEM having fourth-order accuracy in both space and time using low-order discretization techniques. Nevertheless, this conventional method only achieves fourth-order accuracy in time when using only square or cubic elements. That achievement markedly impairs the benefits of FEM with geometrical flexibility. As described herein, that difficulty is solved by construction of a specially designed time-integration method for time discretization. The proposed method can use irregularly shaped elements while maintaining fourth-order accuracy in time without additional computational complexity compared to the conventional method. The dispersion and dissipation characteristics of the proposed method are examined respectively both theoretically and numerically. Moreover, the practicality of the method for solving room acoustic problems at kilohertz frequencies is presented via two numerical examples of acoustic simulations in a rectangular sound field including complex sound diffusers and in a complexly shaped concert hall.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-03-13
    Description: Predicting room acoustics using wave-based numerical methods has attracted great attention in recent years. Nevertheless, wave-based predictions are generally computationally expensive for room acoustics simulations because of the large dimensions of architectural spaces, the wide audible frequency ranges, the complex boundary conditions, and inherent error properties of numerical methods. Therefore, development of an efficient wave-based room acoustic solver with smaller computational resources is extremely important for practical applications. This paper describes a preliminary study aimed at that development. We discuss the potential of the Partition of Unity Finite Element Method (PUFEM) as a room acoustic solver through the examination with 2D real-scale room acoustic problems. Low-order finite elements enriched by plane waves propagating in various directions are used herein. We examine the PUFEM performance against a standard FEM via two-room acoustic problems in a single room and a coupled room, respectively, including frequency-dependent complex impedance boundaries of Helmholtz resonator type sound absorbers and porous sound absorbers. Results demonstrated that the PUFEM can predict wideband frequency responses accurately under a single coarse mesh with much fewer degrees of freedom than the standard FEM. The reduction reaches O ( 10 − 2 ) at least, suggesting great potential of PUFEM for use as an efficient room acoustic solver.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-13
    Description: Three-dimensional, permeable membrane space sound absorbers have been proposed as practical and economical alternatives to three-dimensional, microperforated panel space sound absorbers. Previously, the sound absorption characteristics of a three-dimensional, permeable membrane space sound absorber were predicted using the two-dimensional boundary element method, but the prediction accuracy was impractical. Herein, a more accurate prediction method is proposed using the three-dimensional boundary element method. In the three-dimensional analysis, incident waves from the elevation angle direction and reflected waves from the floor are considered, using the mirror image. In addition, the dissipated energy ratio is calculated based on the sound absorption of a surface with a unit sound absorption power. To validate the three-dimensional numerical method, and to estimate the improvement in prediction accuracy, the results are compared with those of the measurements and two-dimensional analysis. For cylindrical and rectangular space sound absorbers, three-dimensional analysis provides a significantly improved prediction accuracy for any shape and membrane sample that is suitable for practical use.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-03-11
    Description: This communication reports the results of a pilot study on the sound absorption characteristics of chicken feathers (CFs). Recently, demands for natural and sustainable materials have been extensively studied for acoustical purposes. CF has long been left wasted, however, they can be used for sound-absorbing purposes to improve acoustical environments as a sustainable and green acoustical material. In order to clarify their feasibility, samples of CF absorbers of various densities and thicknesses were prepared, and their sound absorption coefficients were measured by the standard impedance tube method. The measured results were also compared with those of conventional glass wools of the same densities and thicknesses. The results show that CFs have potentially good sound-absorption performance, which is similar to typical fibrous materials: increasing with frequency. Results of direct comparison with glass wool demonstrate that the absorption coefficients of CFs are comparable and, at some frequencies, somewhat higher than conventional glass wools in some cases. Additionally, the first step for searching a prediction method for the sound absorption performance of CFs, their flow resistivity was measured and a Delany–Bazley–Miki model was examined. However, the resultant flow resistivity was unexpectedly low, and the model gave only a much lower value than that measured. The reason for the discrepancies is the subject of a future study.
    Electronic ISSN: 2071-1050
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2020-11-16
    Description: This communication compares the previously reported results of the acoustic environment, mainly noise levels at a fixed point, in a quiet residential area in Kobe, Japan, under the declaration of the COVID-19 state of emergency in May 2020 with the results of two follow-up studies in the same area: subsequent follow-up noise measurements in June and July–August 2020, and the present results of measurements in September–October 2020. The results of the comparison among the above three measurements suggest that noise levels were lower during September-October 2020 than during the declaration of the state of emergency in May 2020. In the period from May to October 2020, the noise level was significantly higher in July and August of the same year due to the sound of cicadas, which are common in this area. This suggests that it is difficult to set the target values of the acoustic environment planning by referring to the low noise level at lockdown or similar measures in areas with large seasonal variations in acoustic environment. Although many case studies are necessary to obtain appropriate target values, one case study is presented in this communication to illustrate an example and discuss its difficulty.
    Electronic ISSN: 2413-8851
    Topics: Architecture, Civil Engineering, Surveying
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...