ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 71 (1992), S. 4557-4566 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: Sol-gel processing methods have been used to prepare thin films of lead titanate, Pb(Zr,Ti)O3, and Pb(Mg1/3Nb2/3)O3 on sapphire and single-crystal strontium titanate substrates. These films have been characterized using x-ray diffraction, optical waveguiding measurements at 633 nm wavelength, and optical transmission measurements. The films, in general, contain a mixture of perovskite and pyrochlore phases, with perovskite formation being favored by higher processing temperatures, by use of the SrTiO3 substrates, and by the addition of excess lead precursor compound to the starting solutions. The films have refractive indices close to, but lower than, those of the corresponding bulk materials. The reduction of the refractive indices from the bulk values is believed to result primarily from incomplete densification. Transmission measurements show that the optical dispersion in the PbTiO3 films is similar to that in the bulk crystal. Although all films showed scattering losses, waveguiding over distances up to 1 cm was observed in some films. For multimode waveguides, conformity of the mode indices to those expected for a uniform guide is suggested as one test of film uniformity as a function of depth.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    [S.l.] : American Institute of Physics (AIP)
    Journal of Applied Physics 60 (1986), S. 2069-2080 
    ISSN: 1089-7550
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The low-temperature dielectric properties of strontium titanate aluminosilicate glass-ceramics, in which perovskite SrTiO3 is the primary crystalline phase, have been investigated. These glass-ceramics exhibited dielectric constant peaks at temperatures below 100 K; the magnitude of these peaks, along with their frequency and temperature dependencies, were strongly dependent on the crystallization conditions. In heavily crystallized glass-ceramics, two low-temperature, relaxation-type loss mechanisms were identified, at temperature ranges near 50 and 100 K. The magnitude of the dielectric loss peak increased with increasing frequency for the lower temperature (50 K) mechanism and the magnitude of the loss peak decreased with increasing frequency for the higher temperature (100 K) mechanism. Arrhenius activation energies were calculated to be 0.054 and 0.17 eV for the lower and higher temperature loss mechanisms, respectively. The higher temperature loss mechanism was further analyzed by the Cole–Cole method, and a relaxation strength of 41 was calculated. It was proposed that the dielectric constant and loss peaks were related to ferroic phenomena occurring in the SrTiO3 phase, caused by interactions of the SrTiO3 with the glass-ceramic matrix.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Marine mammal science 20 (2004), S. 0 
    ISSN: 1748-7692
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 23 (1988), S. 3997-4003 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract This is the first in a series of two papers describing the crystallization and dielectric properties of glass-ceramics derived from a particular strontium titanium aluminosilicate glass composition. This first paper concerns the development of crystalline phases and microstructure of glass-ceramics prepared under various crystallization conditions. In the following paper, the dielectric properties of these glass-ceramics are described and correlated with the characterization results. Perovskite strontium titanate (SrTiO3) was the primary crystalline phase in glass-ceramics crystallized over the temperature range of 800 to 1100° C. At crystallization temperatures below 950° C, SrTiO3 formed with a spherulitic or dendritic growth habit. X-ray diffraction suggested that the SrTiO3 crystallized in a perovskite-like “precursor” phase which transformed to perovskite SrTiO3 with further crystallization time. However, electron diffraction indicated that this “precursor” phase was cubic perovskite SrTiO3. At higher crystallization temperatures, perovskite SrTiO3 was present as individual crystallites without evidence of the spherulitic habit. The crystallization of SrTiO3 was followed by that of other phases, the hexacelsian and anorthite forms of SrAl3Si2O8, and the rutile and anatase forms of TiO2. The crystallization sequence and microstructure of the glass-ceramics were determined by the competition for strontium and titanium between the crystallizing phases, SrTiO3 and SrAl2Si2O8, and TiO2.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 23 (1988), S. 4004-4012 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The dielectric properties of the strontium titanate aluminosilicate glass-ceramics described in the previous paper have been investigated over the frequency range of 10 to 1000 kHz and temperature range of −170 to 200° C. The dielectric properties were strongly dependent on the crystallization conditions, which determined the amounts of SrTiO3 and secondary crystalline phases, and the microstructure of the glass-ceramics. Room temperature values of the dielectric constant and temperature coefficient varied from 13.5 and +125 p.p.m. ° C−1 in uncrystallized glass to 47 and −600 p.p.m. ° C−1, respectively, in glass-ceramics crystallized for 16 h at 1100° C. Relatively low dielectric losses (tanδ=0.002 at 1 MHz) were observed in uncrystallized glass, and the dielectric losses increased with both frequency and temperature. The dielectric loss at temperatures below −50° C increased upon crystallization of SrTiO3, while the dielectric loss at ambient temperatures (and above) decreased significantly with the crystallization of hexacelsian SrAl2Si2O3. The crystallization of titania in glass-ceramics with high crystallization temperatures resulted in large low frequency, high temperature losses, due to Maxwell-Wagner-Sillars effects. In most glass and glass-ceramic samples, a temperature-independent increase of dielectric loss was observed over the frequency range of 10 to 1000 kHz from −50 to 200° C; the cause of these increased losses was not determined. Maxima in both the dielectric constant and loss appeared at low temperatures (below −100° C), and their magnitudes increased, as the crystallization temperature or time was increased. In the early stages of crystallization, the dielectric constant maxima could be explained on the basis of dielectric mixing between perovskite SrTiO3 and the glassy matrix. However, with higher crystallization temperatures, peaks in the dielectric constant and loss were the result of ferroic effects within the SrTiO3.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 27 (1992), S. 3932-3938 
    ISSN: 1573-4803
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Notes: Abstract The dielectric properties of unreinforced Lanxide™ Al2O3/Al composites have been investigated over a wide range of temperatures and frequencies. These composites were formed by the directed oxidation of suitably doped aluminium-based alloy melts, with no filler or reinforcing material in the reaction path. As-grown composite materials were good electrical conductors in all directions owing to the presence of an interconnected metallic constituent. As the metallic phases were partially removed (in favour of porosity) by continuing the oxidation reaction to completion, the composites remained electrically conducting parallel to, and became insulating transverse to, the original growth direction of the composite. This anisotropy apparently was caused by different connectivity of the metal phase between the two directions. Thermal treatments at 1600°C in argon resulted in volatilization of the residual metal in the composite, thus further increasing the porosity. As the metal content was decreased, the composites changed from conducting to insulating along the growth direction. When the metallic phase was removed completely, the porous alumina ceramic maintained anisotropic dielectric properties, due to c-axis alignment of the alumina (corundum) phase along the growth direction. The dielectric constants were 8.0 and 6.4, respectively, parallel and perpendicular to the c-axis aligned directions of the porous alumina ceramic. A dielectric relaxation phenomenon was observed in some samples of both as-grown and thermally treated material, and was attributed to an unidentified impurity effect.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 1988-11-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1988-11-01
    Print ISSN: 0022-2461
    Electronic ISSN: 1573-4803
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1983-08-15
    Print ISSN: 0163-1829
    Electronic ISSN: 1095-3795
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1992-05-01
    Print ISSN: 0021-8979
    Electronic ISSN: 1089-7550
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...