ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-01-16
    Description: How diversity evolves and persists in biofilms is essential for understanding much of microbial life, including the uncertain dynamics of chronic infections. We developed a biofilm model enabling long-term selection for daily adherence to and dispersal from a plastic bead in a test tube. Focusing on a pathogen of the...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1991-11-15
    Description: Stratigraphic records from four sediment cores collected along a transect across the Chesapeake Bay near the mouth of the Choptank River were used to reconstruct a 2000-year history of anoxia and eutrophication in the Chesapeake Bay. Variations in pollen, diatoms, concentration of organic carbon, nitrogen, sulfur, acid-soluble iron, and an estimate of the degree of pyritization of iron indicate that sedimentation rates, anoxic conditions and eutrophication have increased in the Chesapeake Bay since the time of European settlement.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cooper, S R -- Brush, G S -- New York, N.Y. -- Science. 1991 Nov 15;254(5034):992-6.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17731522" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-01-24
    Description: Prospecting macroalgae (seaweeds) as feedstocks for bioconversion into biofuels and commodity chemical compounds is limited primarily by the availability of tractable microorganisms that can metabolize alginate polysaccharides. Here, we present the discovery of a 36-kilo-base pair DNA fragment from Vibrio splendidus encoding enzymes for alginate transport and metabolism. The genomic integration of this ensemble, together with an engineered system for extracellular alginate depolymerization, generated a microbial platform that can simultaneously degrade, uptake, and metabolize alginate. When further engineered for ethanol synthesis, this platform enables bioethanol production directly from macroalgae via a consolidated process, achieving a titer of 4.7% volume/volume and a yield of 0.281 weight ethanol/weight dry macroalgae (equivalent to ~80% of the maximum theoretical yield from the sugar composition in macroalgae).〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Wargacki, Adam J -- Leonard, Effendi -- Win, Maung Nyan -- Regitsky, Drew D -- Santos, Christine Nicole S -- Kim, Peter B -- Cooper, Susan R -- Raisner, Ryan M -- Herman, Asael -- Sivitz, Alicia B -- Lakshmanaswamy, Arun -- Kashiyama, Yuki -- Baker, David -- Yoshikuni, Yasuo -- New York, N.Y. -- Science. 2012 Jan 20;335(6066):308-13. doi: 10.1126/science.1214547.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Bio Architecture Lab, 604 Bancroft Way, Suite A, Berkeley, CA 94710, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22267807" target="_blank"〉PubMed〈/a〉
    Keywords: Alginates/chemistry/*metabolism ; Bacterial Proteins/genetics/metabolism ; *Biofuels ; Biological Transport ; Biomass ; Carrier Proteins/genetics/metabolism ; Escherichia coli/*genetics/metabolism ; Ethanol/*metabolism ; Fermentation ; Genes, Bacterial ; Glucose/metabolism ; Glucuronic Acid/chemistry/metabolism ; Hexuronic Acids/chemistry/metabolism ; Lactic Acid/metabolism ; Mannitol/metabolism ; *Metabolic Engineering ; Metabolic Networks and Pathways ; Open Reading Frames ; Phaeophyta/*metabolism ; Polysaccharide-Lyases/genetics/metabolism ; Seaweed/*metabolism ; Vibrio/*enzymology/genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-03
    Description: The increasing demands placed on natural resources for fuel and food production require that we explore the use of efficient, sustainable feedstocks such as brown macroalgae. The full potential of brown macroalgae as feedstocks for commercial-scale fuel ethanol production, however, requires extensive re-engineering of the alginate and mannitol catabolic pathways in the standard industrial microbe Saccharomyces cerevisiae. Here we present the discovery of an alginate monomer (4-deoxy-L-erythro-5-hexoseulose uronate, or DEHU) transporter from the alginolytic eukaryote Asteromyces cruciatus. The genomic integration and overexpression of the gene encoding this transporter, together with the necessary bacterial alginate and deregulated native mannitol catabolism genes, conferred the ability of an S. cerevisiae strain to efficiently metabolize DEHU and mannitol. When this platform was further adapted to grow on mannitol and DEHU under anaerobic conditions, it was capable of ethanol fermentation from mannitol and DEHU, achieving titres of 4.6% (v/v) (36.2 g l(-1)) and yields up to 83% of the maximum theoretical yield from consumed sugars. These results show that all major sugars in brown macroalgae can be used as feedstocks for biofuels and value-added renewable chemicals in a manner that is comparable to traditional arable-land-based feedstocks.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Enquist-Newman, Maria -- Faust, Ann Marie E -- Bravo, Daniel D -- Santos, Christine Nicole S -- Raisner, Ryan M -- Hanel, Arthur -- Sarvabhowman, Preethi -- Le, Chi -- Regitsky, Drew D -- Cooper, Susan R -- Peereboom, Lars -- Clark, Alana -- Martinez, Yessica -- Goldsmith, Joshua -- Cho, Min Y -- Donohoue, Paul D -- Luo, Lily -- Lamberson, Brigit -- Tamrakar, Pramila -- Kim, Edward J -- Villari, Jeffrey L -- Gill, Avinash -- Tripathi, Shital A -- Karamchedu, Padma -- Paredes, Carlos J -- Rajgarhia, Vineet -- Kotlar, Hans Kristian -- Bailey, Richard B -- Miller, Dennis J -- Ohler, Nicholas L -- Swimmer, Candace -- Yoshikuni, Yasuo -- England -- Nature. 2014 Jan 9;505(7482):239-43. doi: 10.1038/nature12771. Epub 2013 Dec 1.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉1] Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA [2]. ; 1] Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA [2] Manus Biosynthesis Inc., 790 Memorial Drive, Suite 102, Cambridge, Massachusetts 02139 (C.N.S.S.); Calysta Energy, 1140 O'Brien Drive, Menlo Park, California 94025 (D.D.R.); Sutro Biopharma lnc., 310 Utah Avenue, Suite 150, South San Francisco, California 94080, USA (A.G.); Total New Energies USA, 5858 Horton Street, Emeryville, California 94560 (S.A.T.; V.R.). ; Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA. ; Department of Chemical Engineering and Materials Science, Michigan State University, 2527 Engineering Building, East Lansing, Michigan 48824-1226, USA. ; Statoil ASA, Statoil Research Centre, Arkitekt Ebbells vei 10, Rotvoll, 7005 Trondheim, Norway. ; 1] Bio Architecture Lab Inc., 604 Bancroft Way, Suite A, Berkeley, California 94710, USA [2] BALChile S.A., Badajoz 100, Oficina 1404, Las Condes, Santiago 7550000, Chile [3] BAL Biofuels S.A., Badajoz 100, Oficina 1404, Las Condes, Santiago 7550000, Chile.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/24291791" target="_blank"〉PubMed〈/a〉
    Keywords: Alginates/metabolism ; Anaerobiosis ; Ascomycota/genetics/metabolism ; Biofuels/*supply & distribution ; Biotechnology ; *Carbohydrate Metabolism ; Carrier Proteins/genetics/metabolism ; Ethanol/*metabolism ; Evolution, Molecular ; Fermentation ; Genetic Complementation Test ; *Genetic Engineering ; Glucuronic Acid/metabolism ; Hexuronic Acids/metabolism ; Mannitol/metabolism ; Phaeophyta/genetics/*metabolism ; Quinic Acid/metabolism ; Reproducibility of Results ; Saccharomyces cerevisiae/genetics/*metabolism ; Seaweed/genetics/metabolism ; Uronic Acids/metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-08-15
    Description: The response of eukaryotic cells to ionising radiation (IR)-induced double-strand DNA breaks is highly conserved and involves a DNA repair mechanism characterised by the early phosphorylation of histone protein H2AX (producing the active form H2AX). Although the expression of an induced H2AX variant has been detected in Drosophila melanogaster , the expression and radiation response of a H2AX homologue has not been reported in economically important fruit flies. We use Bactrocera tryoni (Diptera: Tephritidae, Queensland fruit fly or ‘Q-fly’) to investigate this response with a view to developing molecular assays to detect/quantify exposure of fruit flies to IR and consequent DNA damage. Deep sequencing confirmed the presence of a H2AX homologue that we have termed H2AvB (i.e. variant Bactrocera ) and has an identical sequence to a histone reported from the human disease vector Glossina morsitans . A linear dose–response of H2AvB (0–400 Gy IR) was observed in whole Q-fly pupal lysates 24h post-IR and was detected at doses as low as 20 Gy. H2AvB signal peaked at ~20min after IR exposure and at 24h post-IR the signal remained elevated but declined significantly by 5 days. Persistent and dose-dependent H2AvB signal could be detected and quantified either by western blot or by laser scanning cytometry up to 17 days post-IR exposure in histone extracts or isolated nuclei from adult Q-flies (irradiated as pupae). We conclude that IR exposure in Q-fly leads to persistent H2AvB signals (over a period of days) that can easily be detected by western blot or quantitative immunofluorescence techniques. These approaches have potential as the basis for assays for detection and quantification of prior IR exposure in pest fruit flies.
    Print ISSN: 0267-8357
    Electronic ISSN: 1464-3804
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 24 (1952), S. 1360-1361 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 24 (1952), S. 1198-1199 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 7 (1935), S. 350-352 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 7 (1935), S. 353-355 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 8 (1936), S. 210-211 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...