ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-29
    Description: The structure of upper crustal magma plumbing systems controls the distribution of volcanism and influences tectonic processes. However, delineating the structure and volume of plumbing systems is difficult because (1) active intrusion networks cannot be directly accessed; (2) field outcrops are commonly limited; and (3) geophysical data imaging the subsurface are restricted in areal extent and resolution. This has led to models involving the vertical transfer of magma via dikes, extending from a melt source to overlying reservoirs and eruption sites, being favored in the volcanic literature. However, while there is a wealth of evidence to support the occurrence of dike-dominated systems, we synthesize field- and seismic reflection–based observations and highlight that extensive lateral magma transport (as much as 4100 km) may occur within mafic sill complexes. Most of these mafic sill complexes occur in sedimentary basins (e.g., the Karoo Basin, South Africa), although some intrude crystalline continental crust (e.g., the Yilgarn craton, Australia), and consist of interconnected sills and inclined sheets. Sill complex emplacement is largely controlled by host-rock lithology and structure and the state of stress. We argue that plumbing systems need not be dominated by dikes and that magma can be transported within widespread sill complexes, promoting the development of volcanoes that do not overlie the melt source. However, the extent to which active volcanic systems and rifted margins are underlain by sill complexes remains poorly constrained, despite important implications for elucidating magmatic processes, melt volumes, and melt sources.
    Electronic ISSN: 1553-040X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-04-06
    Description: The conserved Sir2 family of proteins has protein deacetylase activity that is dependent on NAD (the oxidized form of nicotinamide adenine dinucleotide). Although histones are one likely target for the enzymatic activity of eukaryotic Sir2 proteins, little is known about the substrates and roles of prokaryotic Sir2 homologs. We reveal that an archaeal Sir2 homolog interacts specifically with the major archaeal chromatin protein, Alba, and that Alba exists in acetylated and nonacetylated forms. Furthermore, we show that Sir2 can deacetylate Alba and mediate transcriptional repression in a reconstituted in vitro transcription system. These data provide a paradigm for how Sir2 family proteins influence transcription and suggest that modulation of chromatin structure by acetylation arose before the divergence of the archaeal and eukaryotic lineages.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Bell, Stephen D -- Botting, Catherine H -- Wardleworth, Benjamin N -- Jackson, Stephen P -- White, Malcolm F -- New York, N.Y. -- Science. 2002 Apr 5;296(5565):148-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Medical Research Council (MRC) Cancer Cell Unit, The Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 2QH, UK. sdb@mole.bio.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/11935028" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Amino Acid Sequence ; Archaeal Proteins/*chemistry/*metabolism ; Chromatin/*metabolism ; DNA/metabolism ; Gene Expression Regulation, Archaeal ; Histone Deacetylases/chemistry/*metabolism ; Molecular Sequence Data ; Molecular Weight ; Protein Binding ; Recombinant Fusion Proteins/chemistry/metabolism ; *Silent Information Regulator Proteins, Saccharomyces cerevisiae ; Sirtuin 2 ; Sirtuins ; Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization ; Sulfolobus/*chemistry/genetics/metabolism ; Templates, Genetic ; Trans-Activators/chemistry/*metabolism ; Transcription, Genetic
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2008-08-22
    Description: DNA double-strand breaks (DSBs) are repaired by two principal mechanisms: non-homologous end-joining (NHEJ) and homologous recombination (HR). HR is the most accurate DSB repair mechanism but is generally restricted to the S and G2 phases of the cell cycle, when DNA has been replicated and a sister chromatid is available as a repair template. By contrast, NHEJ operates throughout the cell cycle but assumes most importance in G1 (refs 4, 6). The choice between repair pathways is governed by cyclin-dependent protein kinases (CDKs), with a major site of control being at the level of DSB resection, an event that is necessary for HR but not NHEJ, and which takes place most effectively in S and G2 (refs 2, 5). Here we establish that cell-cycle control of DSB resection in Saccharomyces cerevisiae results from the phosphorylation by CDK of an evolutionarily conserved motif in the Sae2 protein. We show that mutating Ser 267 of Sae2 to a non-phosphorylatable residue causes phenotypes comparable to those of a sae2Delta null mutant, including hypersensitivity to camptothecin, defective sporulation, reduced hairpin-induced recombination, severely impaired DNA-end processing and faulty assembly and disassembly of HR factors. Furthermore, a Sae2 mutation that mimics constitutive Ser 267 phosphorylation complements these phenotypes and overcomes the necessity of CDK activity for DSB resection. The Sae2 mutations also cause cell-cycle-stage specific hypersensitivity to DNA damage and affect the balance between HR and NHEJ. These findings therefore provide a mechanistic basis for cell-cycle control of DSB repair and highlight the importance of regulating DSB resection.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635538/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2635538/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Huertas, Pablo -- Cortes-Ledesma, Felipe -- Sartori, Alessandro A -- Aguilera, Andres -- Jackson, Stephen P -- A5290/Cancer Research UK/United Kingdom -- LSHG-CT-2005-512113/Cancer Research UK/United Kingdom -- England -- Nature. 2008 Oct 2;455(7213):689-92. doi: 10.1038/nature07215. Epub 2008 Aug 20.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/18716619" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Motifs ; CDC28 Protein Kinase, S cerevisiae/*metabolism ; Cell Cycle ; Cell Line ; Cell Survival ; Conserved Sequence ; *DNA Breaks, Double-Stranded ; *DNA Repair ; Endodeoxyribonucleases/metabolism ; Endonucleases ; Exodeoxyribonucleases/metabolism ; Humans ; Mutation ; Phosphorylation ; Phosphoserine/metabolism ; Rad52 DNA Repair and Recombination Protein/metabolism ; *Recombination, Genetic ; Saccharomyces cerevisiae/enzymology/*genetics/*metabolism ; Saccharomyces cerevisiae Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2009-12-18
    Description: DNA double-strand breaks (DSBs) are highly cytotoxic lesions that are generated by ionizing radiation and various DNA-damaging chemicals. Following DSB formation, cells activate the DNA-damage response (DDR) protein kinases ATM, ATR and DNA-PK (also known as PRKDC). These then trigger histone H2AX (also known as H2AFX) phosphorylation and the accumulation of proteins such as MDC1, 53BP1 (also known as TP53BP1), BRCA1, CtIP (also known as RBBP8), RNF8 and RNF168/RIDDLIN into ionizing radiation-induced foci (IRIF) that amplify DSB signalling and promote DSB repair. Attachment of small ubiquitin-related modifier (SUMO) to target proteins controls diverse cellular functions. Here, we show that SUMO1, SUMO2 and SUMO3 accumulate at DSB sites in mammalian cells, with SUMO1 and SUMO2/3 accrual requiring the E3 ligase enzymes PIAS4 and PIAS1. We also establish that PIAS1 and PIAS4 are recruited to damage sites via mechanisms requiring their SAP domains, and are needed for the productive association of 53BP1, BRCA1 and RNF168 with such regions. Furthermore, we show that PIAS1 and PIAS4 promote DSB repair and confer ionizing radiation resistance. Finally, we establish that PIAS1 and PIAS4 are required for effective ubiquitin-adduct formation mediated by RNF8, RNF168 and BRCA1 at sites of DNA damage. These findings thus identify PIAS1 and PIAS4 as components of the DDR and reveal how protein recruitment to DSB sites is controlled by coordinated SUMOylation and ubiquitylation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904806/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2904806/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Galanty, Yaron -- Belotserkovskaya, Rimma -- Coates, Julia -- Polo, Sophie -- Miller, Kyle M -- Jackson, Stephen P -- 086861/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- A5290/Cancer Research UK/United Kingdom -- Cancer Research UK/United Kingdom -- England -- Nature. 2009 Dec 17;462(7275):935-9. doi: 10.1038/nature08657.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust and Cancer Research UK Gurdon Institute, and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20016603" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; BRCA1 Protein/metabolism ; Cell Line ; Cell Line, Tumor ; *DNA Breaks, Double-Stranded ; *DNA Repair ; DNA-Binding Proteins/genetics/metabolism ; Fluorescence Recovery After Photobleaching ; Humans ; Intracellular Signaling Peptides and Proteins/genetics/metabolism ; Models, Biological ; Phosphorylation ; Protein Inhibitors of Activated STAT/chemistry/genetics/*metabolism ; Protein Structure, Tertiary ; Replication Protein A/metabolism ; Small Ubiquitin-Related Modifier Proteins/genetics/*metabolism ; Ubiquitin-Conjugating Enzymes/genetics/metabolism ; Ubiquitin-Protein Ligases/metabolism ; Ubiquitination
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-10-23
    Description: The prime objective for every life form is to deliver its genetic material, intact and unchanged, to the next generation. This must be achieved despite constant assaults by endogenous and environmental agents on the DNA. To counter this threat, life has evolved several systems to detect DNA damage, signal its presence and mediate its repair. Such responses, which have an impact on a wide range of cellular events, are biologically significant because they prevent diverse human diseases. Our improving understanding of DNA-damage responses is providing new avenues for disease management.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906700/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2906700/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Jackson, Stephen P -- Bartek, Jiri -- A5290/Cancer Research UK/United Kingdom -- Biotechnology and Biological Sciences Research Council/United Kingdom -- Cancer Research UK/United Kingdom -- Wellcome Trust/United Kingdom -- England -- Nature. 2009 Oct 22;461(7267):1071-8. doi: 10.1038/nature08467.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK. s.jackson@gurdon.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19847258" target="_blank"〉PubMed〈/a〉
    Keywords: Cell Cycle/physiology ; DNA Damage/genetics/*physiology ; DNA Repair/genetics/*physiology ; *Disease ; Genome, Human/genetics ; Humans ; Signal Transduction
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2007-02-03
    Description: Posttranslational modifications of the histone octamer play important roles in regulating responses to DNA damage. Here, we reveal that Saccharomyces cerevisiae Rtt109p promotes genome stability and resistance to DNA-damaging agents, and that it does this by functionally cooperating with the histone chaperone Asf1p to maintain normal chromatin structure. Furthermore, we show that, as for Asf1p, Rtt109p is required for histone H3 acetylation on lysine 56 (K56) in vivo. Moreover, we show that Rtt109p directly catalyzes this modification in vitro in a manner that is stimulated by Asf1p. These data establish Rtt109p as a member of a new class of histone acetyltransferases and show that its actions are critical for cell survival in the presence of DNA damage during S phase.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334813/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3334813/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Driscoll, Robert -- Hudson, Amanda -- Jackson, Stephen P -- A5290/Cancer Research UK/United Kingdom -- BBS/S/D/2004/12546/Biotechnology and Biological Sciences Research Council/United Kingdom -- Wellcome Trust/United Kingdom -- New York, N.Y. -- Science. 2007 Feb 2;315(5812):649-52.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Wellcome Trust and Cancer Research U.K. Gurdon Institute and the Department of Zoology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17272722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation ; Cell Cycle Proteins/genetics/metabolism ; Chromosomes, Fungal/genetics ; DNA Breaks, Double-Stranded ; DNA Damage ; *Genome, Fungal ; *Genomic Instability ; Histone Acetyltransferases/genetics/*metabolism ; Histones/*metabolism ; Lysine/*metabolism ; Molecular Chaperones ; Mutation ; Recombinant Proteins/metabolism ; S Phase ; Saccharomyces cerevisiae/enzymology/*genetics/growth & development/*metabolism ; Saccharomyces cerevisiae Proteins/genetics/*metabolism ; Substrate Specificity
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2002-09-07
    Description: In eukaryotic cells, double-strand breaks (DSBs) in DNA are generally repaired by the pathway of homologous recombination or by DNA nonhomologous end joining (NHEJ). Both pathways have been highly conserved throughout eukaryotic evolution, but no equivalent NHEJ system has been identified in prokaryotes. The NHEJ pathway requires a DNA end-binding component called Ku. We have identified bacterial Ku homologs and show that these proteins retain the biochemical characteristics of the eukaryotic Ku heterodimer. Furthermore, we show that bacterial Ku specifically recruits DNA ligase to DNA ends and stimulates DNA ligation. Loss of these proteins leads to hypersensitivity to ionizing radiation in Bacillus subtilis. These data provide evidence that many bacteria possess a DNA DSB repair apparatus that shares many features with the NHEJ system of eukarya and suggest that this DNA repair pathway arose before the prokaryotic and eukaryotic lineages diverged.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Weller, Geoffrey R -- Kysela, Boris -- Roy, Rajat -- Tonkin, Louise M -- Scanlan, Elizabeth -- Della, Marina -- Devine, Susanne Krogh -- Day, Jonathan P -- Wilkinson, Adam -- d'Adda di Fagagna, Fabrizio -- Devine, Kevin M -- Bowater, Richard P -- Jeggo, Penny A -- Jackson, Stephen P -- Doherty, Aidan J -- New York, N.Y. -- Science. 2002 Sep 6;297(5587):1686-9.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Cambridge Institute for Medical Research & Department of Haematology, University of Cambridge, Hills Road, Cambridge CB2 2XY, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12215643" target="_blank"〉PubMed〈/a〉
    Keywords: *Antigens, Nuclear ; Bacillus subtilis/*genetics ; Bacterial Proteins/metabolism ; Binding Sites ; DNA Damage ; *DNA Helicases ; DNA Ligases/*metabolism ; *DNA Repair ; DNA, Bacterial/*biosynthesis/metabolism ; DNA-Binding Proteins/metabolism ; Mutation ; Nuclear Proteins/metabolism ; Protein Binding
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-07-27
    Description: Left unrepaired, the myriad types of damage that can occur in genomic DNA pose a serious threat to the faithful transmission of the correct complement of genetic material. Defects in DNA damage signaling and repair result in genomic instability, a hallmark of cancer, and often cause lethality, underlining the importance of these processes in the cell and whole organism. The past decade has seen huge advances in our understanding of how the signal transduction pathways triggered by DNA damage radically alter cell behavior. In contrast, it is still unclear how primary DNA damage is detected and how this interfaces with signal transduction and DNA repair proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rouse, John -- Jackson, Stephen P -- New York, N.Y. -- Science. 2002 Jul 26;297(5581):547-51.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Wellcome Trust/Cancer Research UK Institute (of Cancer and Developmental Biology), University of Cambridge, Tennis Court Road, Cambridge CB2 1QR, UK. jwr24@mole.bio.cam.ac.uk〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/12142523" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Proteins/metabolism ; DNA/*metabolism ; *DNA Damage ; *DNA Repair ; DNA-Binding Proteins ; Fungal Proteins/metabolism ; Humans ; Intracellular Signaling Peptides and Proteins ; Models, Biological ; Protein-Serine-Threonine Kinases/metabolism ; Proteins/metabolism ; *Saccharomyces cerevisiae Proteins ; *Signal Transduction ; Tumor Suppressor Proteins ; Yeasts/genetics/metabolism
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-28
    Description: The detection of DNA lesions within chromatin represents a critical step in cellular responses to DNA damage. However, the regulatory mechanisms that couple chromatin sensing to DNA-damage signalling in mammalian cells are not well understood. Here we show that tyrosine phosphorylation of the protein acetyltransferase KAT5 (also known as TIP60) increases after DNA damage in a manner that promotes KAT5 binding to the histone mark H3K9me3. This triggers KAT5-mediated acetylation of the ATM kinase, promoting DNA-damage-checkpoint activation and cell survival. We also establish that chromatin alterations can themselves enhance KAT5 tyrosine phosphorylation and ATM-dependent signalling, and identify the proto-oncogene c-Abl as a mediator of this modification. These findings define KAT5 tyrosine phosphorylation as a key event in the sensing of genomic and chromatin perturbations, and highlight a key role for c-Abl in such processes.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859897/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3859897/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Kaidi, Abderrahmane -- Jackson, Stephen P -- 092096/Wellcome Trust/United Kingdom -- 11224/Cancer Research UK/United Kingdom -- 268536/European Research Council/International -- A11224/Cancer Research UK/United Kingdom -- C6/A11224/Cancer Research UK/United Kingdom -- WT092096/Wellcome Trust/United Kingdom -- England -- Nature. 2013 Jun 6;498(7452):70-4. doi: 10.1038/nature12201. Epub 2013 May 26.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Gurdon Institute and Department of Biochemistry, University of Cambridge, Tennis Court Road, Cambridge CB2 1QN, UK.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23708966" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; Animals ; Ataxia Telangiectasia Mutated Proteins ; Cell Cycle Checkpoints ; Cell Cycle Proteins/*metabolism ; Cell Line ; Cell Survival/radiation effects ; Chromatin/*metabolism ; DNA Damage ; DNA-Binding Proteins/*metabolism ; Enzyme Activation ; HeLa Cells ; Histone Acetyltransferases/*chemistry/*metabolism ; Histones/chemistry/metabolism ; Humans ; Lysine/chemistry/metabolism ; Methylation ; Molecular Sequence Data ; Phosphorylation ; Phosphotyrosine/*metabolism ; Protein-Serine-Threonine Kinases/*metabolism ; Proto-Oncogene Proteins c-abl/metabolism ; *Signal Transduction ; Tumor Suppressor Proteins/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1996-07-12
    Description: An inheritable muscular hypertrophy was recently described in sheep and shown to be determined by the callipyge gene mapped to ovine chromosome 18. Here, the callipyge phenotype was found to be characterized by a nonmendelian inheritance pattern, referred to as polar overdominance, where only heterozygous individuals having inherited the callipyge mutation from their sire express the phenotype. The possible role of parental imprinting in the determinism of polar overdominance is envisaged.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Cockett, N E -- Jackson, S P -- Shay, T L -- Farnir, F -- Berghmans, S -- Snowder, G D -- Nielsen, D M -- Georges, M -- New York, N.Y. -- Science. 1996 Jul 12;273(5272):236-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT 84322-4700, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8662506" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Chromosome Mapping ; Crosses, Genetic ; Female ; *Genes, Dominant ; *Genomic Imprinting ; Genotype ; Heterozygote ; Lod Score ; Male ; Models, Genetic ; Muscle, Skeletal/*anatomy & histology ; Mutation ; Phenotype ; Sheep/*anatomy & histology/*genetics
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...