ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2014-11-04
    Description: Stability of the knee relies on the meniscus, a complex connective tissue with poor healing ability. Current meniscal tissue engineering is inadequate, as the signals for increasing meniscal cell proliferation have not been established. In this study, collagen scaffold structure, isotropic or aligned, and fibrin gel addition were tested. Metabolic activity was promoted by fibrin addition. Cellular proliferation, however, was significantly increased by both aligned architectures and fibrin addition. None of the constructs impaired collagen type I production or triggered adverse inflammatory responses. It was demonstrated that both fibrin gel addition and optimized scaffold architecture effectively promote meniscal cell proliferation.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-11-06
    Description: We describe the production of collagen fibre bundles through a multi-strand, semi-continuous extrusion process. Cross-linking using an EDC (1-ethyl-3-(3-dimethylaminopropyl)carbodiimide), NHS (N-hydroxysuccinimide) combination was considered. Atomic Force Microscopy and Raman spectroscopy focused on how cross-linking affected the collagen fibrillar structure. In the cross-linked fibres, a clear fibrillar structure comparable to native collagen was observed which was not observed in the non-cross-linked fibre. The amide III doublet in the Raman spectra provided additional evidence of alignment in the cross-linked fibres. Raman spectroscopy also indicated no residual polyethylene glycol (from the fibre forming buffer) or water in any of the fibres.
    Electronic ISSN: 2166-532X
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-08-08
    Description: The latest Ebola virus (EBOV) epidemic spread rapidly through Guinea, Sierra Leone, and Liberia, creating a global public health crisis and accelerating the assessment of experimental therapeutics and vaccines in clinical trials. One of those vaccines is based on recombinant vesicular stomatitis virus expressing the EBOV glycoprotein (VSV-EBOV), a live-attenuated vector with marked preclinical efficacy. Here, we provide the preclinical proof that VSV-EBOV completely protects macaques against lethal challenge with the West African EBOV-Makona strain. Complete and partial protection was achieved with a single dose given as late as 7 and 3 days before challenge, respectively. This indicates that VSV-EBOV may protect humans against EBOV infections in West Africa with relatively short time to immunity, promoting its use for immediate public health responses.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marzi, Andrea -- Robertson, Shelly J -- Haddock, Elaine -- Feldmann, Friederike -- Hanley, Patrick W -- Scott, Dana P -- Strong, James E -- Kobinger, Gary -- Best, Sonja M -- Feldmann, Heinz -- Intramural NIH HHS/ -- New York, N.Y. -- Science. 2015 Aug 14;349(6249):739-42. doi: 10.1126/science.aab3920. Epub 2015 Aug 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. ; Rocky Mountain Veterinary Branch, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. ; Special Pathogens Program, National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada. ; Laboratory of Virology, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, MT 59840, USA. feldmannh@niaid.nih.gov.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/26249231" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Drug Evaluation, Preclinical ; Ebola Vaccines/*administration & dosage/immunology ; Ebolavirus/genetics/*immunology ; Genetic Vectors ; Glycoproteins/genetics/*immunology ; Hemorrhagic Fever, Ebola/*prevention & control ; Macaca ; Vesiculovirus ; Viral Proteins/genetics/*immunology
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 11 (2000), S. 799-804 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCp were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100 °C showed that the transformation occurs over the temperature range 710–740 °C, under non-equilibrium conditions. The change in crystallite size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100 °C. Even once a single β-TCP phase is obtained at 740 °C there remains a considerable amount of structural change at temperatures between 740 and 1100 °C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 11 (2000), S. 533-539 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract The structural changes that occur during the transformation of a Ca-deficient apatite, prepared by a wet chemical method, to β-TCP were investigated. X-ray diffraction (XRD) analysis of as-prepared samples and samples calcined at temperatures between 500 and 1100 °C showed that the transformation occurs over the temperature range 710–740 °C, under non-equilibrium conditions. The change in crystallite size with increasing calcination/sintering temperature was studied by XRD using the Scherrer formula. Fourier transform infra-red (FTIR) analysis indicated considerable structural change in samples above and below this temperature range. Changes were observed in the hydroxyl, carbonate and phosphate bands as the calcination temperature was increased from 500 to 1100 °C. Even once a single β-TCP phase is obtained at 740 °C there remains a considerable amount of structural change at temperatures between 740 and 1100 °C. This effect was illustrated by an unusual change in the lattice parameters of the β-TCP structure and significant changes in the phosphate bands of the FTIR spectra as the calcination temperature was increased. The results obtained in this study show that the combined experimental techniques of XRD and FTIR are excellent complimentary methods for characterizing structural changes that occur during phase transformations.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 8 (1997), S. 731-736 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Porous hydroxyapatite (Endobon®) specimens were implanted into the femoral condyle of New Zealand White rabbits for up to 6 months. After sacrifice, specimens were sectioned for histology and mechanical testing, where the extent of reinforcement by bony ingrowth was assessed by compression testing and fixation was assessed by push-out testing. From histological observations, it was established that the majority of bone ingrowth occurred between 10 day and 5 weeks after implantation and proceeded predominantly from the deep end of the trephined defect, with some integration from the circumferential sides. At 3 months, the implants were fully integrated, exhibiting bony ingrowth, vascularization and bone marrow stroma within the internal macropores. After 5 weeks, the mean ultimate compressive strength of retrieved implants (6.9 MPa) was found to be greater than that of the original implant (2.2 MPa), and by 3 months the fully integrated implants attained a compressive strength of approximately 20 MPa. Push-out testing demonstrated that after 5 weeks in vivo, the interfacial shear strength reached 3.2 MPa, increasing to 7.3 MPa at 3 and 6 months.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 8 (1997), S. 185-191 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Apatites were prepared with three different fluoride concentrations: 0.0 mM (pure hydroxyapatite) 2.5 mM and 5 mM. Reactions were performed in aqueous medium using a reaction between diammonium orthophosphate and calcium nitrate 4-hydrate and ammonium fluoride at temperatures of 3°, 25°, 60° and 90°C. The effects of reaction temperature and fluoride concentration on the crystal morphology, phase purity and crystallinity of the precipitates were observed, using transmission electron microscopy (TEM), X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy and ion chromatography. Transmission electron micrographs revealed that the crystallites precipitated at 3°C were spheroidal, but became increasingly acicular with increasing precipitation temperature. X-ray diffraction results indicated that all the materials produced were phase pure and that the crystallinity of apatites prepared at higher precipitation temperatures was higher than those prepared at lower precipitation temperatures. A significant difference in the a-axis dimension of fluoride-substituted apatites was observed, as compared to hydroxyapatite. FTIR spectroscopy revealed a hydroxyl band at 3568 cm-1, along with a broad peak of adsorbed water in the region of 3568 cm-1 to 2670 cm-1 in the hydroxyapatite and fluoride-substituted apatite powders. Hence by careful selection of the precipitation conditions and fluoride contents, the composition and morphology of fluoride-substituted apatite may be controlled and this has interesting implications for the development of these materials for biomedical implantation.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Springer
    Journal of materials science 11 (2000), S. 719-724 
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract This work documents an investigation into the effect of water on the density and microstructure of carbonate hydroxyapatite in carbon dioxide sintering atmospheres. Carbonate apatites with carbonate contents of between 3.2 and 7.8 wt % were precipitated and the precipitates were formed into dry gels. Isothermal and isochronal sintering experiments were performed under dry carbon dioxide and wet carbon dioxide (containing 3 wt % water) atmospheres. The effect of carbonate content was studied by using two gels both with a green density of 37% and with carbonate contents of 5.8 and 7.8 wt %. Both isothermal and isochronal experiments demonstrated that bloating of the apatite occurred and this behavior was associated with the loss of carbonate from the apatite. It was found that only in wet carbon dioxide atmospheres fully dense translucent carbonate apatite could be formed. 93% dense carbonate apatite was formed after 4 h sintering at temperatures as low as 700 °C. © 2000 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Hydroxyapatite has been investigated for use in the osseous environment for over 20 years and the biocompatibility of the ceramic and its osseoconductive behavior is well established. Therefore, the use of porous hydroxyapatite for the repair of osseous defects seems promising with potential for complete penetration of osseous tissue and restoration of vascularity throughout the repair site. However, there have been few systematic studies of the effects of physical properties such as macropore size and pore connectivity on the rate and quality of bone integration within porous hydroxyapatite implants. This paper quantifies the early biological response to a well-characterized series of implants with uniform microstructure and phase composition, but differing macrostructures and demonstrates the dependence of the rate of osseointegration on the apparent density of porous hydroxyapatite as a function of pore connectivity. Furthermore, compression testing established that bony ingrowth has a strong reinforcing effect on porous hydroxyapatite implants, which is more pronounced in the lower density implants, as a result of a greater relative volume of bone ingrowth. © 1999 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    ISSN: 1573-4838
    Source: Springer Online Journal Archives 1860-2000
    Topics: Medicine , Technology
    Notes: Abstract Calcium phosphate cements have been the subject of many studies in the last decade because of their biocompatibility, their capacity to fill bone cavities and their hardening properties; properties which are desirable in a broad range of surgical applications. The setting and hardening of these materials are controlled by dissolution–precipitation chemical reactions at room or body temperature and involve crystalline phase transformations. © 1999 Kluwer Academic Publishers
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...