ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2010-10-12
    Description: Gastrointestinal stromal tumour (GIST) is the most common human sarcoma and is primarily defined by activating mutations in the KIT or PDGFRA receptor tyrosine kinases. KIT is highly expressed in interstitial cells of Cajal (ICCs)-the presumed cell of origin for GIST-as well as in haematopoietic stem cells, melanocytes, mast cells and germ cells. Yet, families harbouring germline activating KIT mutations and mice with knock-in Kit mutations almost exclusively develop ICC hyperplasia and GIST, suggesting that the cellular context is important for KIT to mediate oncogenesis. Here we show that the ETS family member ETV1 is highly expressed in the subtypes of ICCs sensitive to oncogenic KIT mediated transformation, and is required for their development. In addition, ETV1 is universally highly expressed in GISTs and is required for growth of imatinib-sensitive and resistant GIST cell lines. Transcriptome profiling and global analyses of ETV1-binding sites suggest that ETV1 is a master regulator of an ICC-GIST-specific transcription network mainly through enhancer binding. The ETV1 transcriptional program is further regulated by activated KIT, which prolongs ETV1 protein stability and cooperates with ETV1 to promote tumorigenesis. We propose that GIST arises from ICCs with high levels of endogenous ETV1 expression that, when coupled with an activating KIT mutation, drives an oncogenic ETS transcriptional program. This differs from other ETS-dependent tumours such as prostate cancer, melanoma and Ewing sarcoma where genomic translocation or amplification drives aberrant ETS expression. It also represents a novel mechanism of oncogenic transcription factor activation.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955195/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2955195/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Chi, Ping -- Chen, Yu -- Zhang, Lei -- Guo, Xingyi -- Wongvipat, John -- Shamu, Tambudzai -- Fletcher, Jonathan A -- Dewell, Scott -- Maki, Robert G -- Zheng, Deyou -- Antonescu, Cristina R -- Allis, C David -- Sawyers, Charles L -- 5F32CA130372/CA/NCI NIH HHS/ -- CA148260/CA/NCI NIH HHS/ -- CA47179/CA/NCI NIH HHS/ -- F32 CA130372/CA/NCI NIH HHS/ -- F32 CA130372-02/CA/NCI NIH HHS/ -- GM40922/GM/NIGMS NIH HHS/ -- K08 CA140946/CA/NCI NIH HHS/ -- K08 CA140946-02/CA/NCI NIH HHS/ -- K08CA140946/CA/NCI NIH HHS/ -- P01 CA047179/CA/NCI NIH HHS/ -- P01 CA047179-169002/CA/NCI NIH HHS/ -- P01CA47179/CA/NCI NIH HHS/ -- R21 MH087840/MH/NIMH NIH HHS/ -- R21 MH087840-01/MH/NIMH NIH HHS/ -- R21MH087840/MH/NIMH NIH HHS/ -- RC2 CA148260-02/CA/NCI NIH HHS/ -- England -- Nature. 2010 Oct 14;467(7317):849-53. doi: 10.1038/nature09409. Epub 2010 Oct 3.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Medicine, Memorial Sloan-Kettering Cancer Center, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/20927104" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Benzamides ; Binding Sites ; Biomarkers, Tumor/genetics/metabolism ; Cell Line, Tumor ; *Cell Lineage ; Cell Survival/drug effects ; *Cell Transformation, Neoplastic ; DNA-Binding Proteins/antagonists & inhibitors/genetics/*metabolism ; Disease Progression ; Enhancer Elements, Genetic/genetics ; Gastrointestinal Stromal Tumors/*metabolism/*pathology ; Gene Expression Profiling ; Gene Expression Regulation, Neoplastic/genetics ; Humans ; Imatinib Mesylate ; Interstitial Cells of Cajal/metabolism/pathology ; Mice ; Mutant Proteins/genetics/metabolism ; Mutation ; NIH 3T3 Cells ; Oncogenes/genetics/*physiology ; Piperazines/pharmacology ; Protein Stability ; Proto-Oncogene Proteins c-kit/genetics/*metabolism ; Pyrimidines/pharmacology ; Signal Transduction ; Transcription Factors/antagonists & inhibitors/genetics/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2010-11-12
    Description: Interaction of pathogens with cells of the immune system results in activation of inflammatory gene expression. This response, although vital for immune defence, is frequently deleterious to the host due to the exaggerated production of inflammatory proteins. The scope of inflammatory responses reflects the activation state of signalling proteins upstream of inflammatory genes as well as signal-induced assembly of nuclear chromatin complexes that support mRNA expression. Recognition of post-translationally modified histones by nuclear proteins that initiate mRNA transcription and support mRNA elongation is a critical step in the regulation of gene expression. Here we present a novel pharmacological approach that targets inflammatory gene expression by interfering with the recognition of acetylated histones by the bromodomain and extra terminal domain (BET) family of proteins. We describe a synthetic compound (I-BET) that by 'mimicking' acetylated histones disrupts chromatin complexes responsible for the expression of key inflammatory genes in activated macrophages, and confers protection against lipopolysaccharide-induced endotoxic shock and bacteria-induced sepsis. Our findings suggest that synthetic compounds specifically targeting proteins that recognize post-translationally modified histones can serve as a new generation of immunomodulatory drugs.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nicodeme, Edwige -- Jeffrey, Kate L -- Schaefer, Uwe -- Beinke, Soren -- Dewell, Scott -- Chung, Chun-Wa -- Chandwani, Rohit -- Marazzi, Ivan -- Wilson, Paul -- Coste, Herve -- White, Julia -- Kirilovsky, Jorge -- Rice, Charles M -- Lora, Jose M -- Prinjha, Rab K -- Lee, Kevin -- Tarakhovsky, Alexander -- England -- Nature. 2010 Dec 23;468(7327):1119-23. doi: 10.1038/nature09589. Epub 2010 Nov 10.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Centre de Recherche GSK, 27 Avenue du Quebec, 91140 Villebon Sur Yvette, France.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21068722" target="_blank"〉PubMed〈/a〉
    Keywords: Acetylation/drug effects ; Animals ; Anti-Inflammatory Agents/chemistry/*pharmacology/therapeutic use ; Benzodiazepines ; Cells, Cultured ; Epigenomics ; Gene Expression Regulation/*drug effects ; Genome-Wide Association Study ; Heterocyclic Compounds with 4 or More Rings/chemistry/*pharmacology/therapeutic ; use ; Histone Deacetylase Inhibitors/pharmacology ; Hydroxamic Acids/pharmacology ; *Inflammation/drug therapy/prevention & control ; Kaplan-Meier Estimate ; Lipopolysaccharides/pharmacology ; Macrophages/*drug effects ; Mice ; Mice, Inbred C57BL ; Models, Molecular ; Protein Structure, Tertiary ; Protein-Serine-Threonine Kinases/metabolism ; Salmonella Infections/drug therapy/immunology/physiopathology/prevention & ; control ; Salmonella typhimurium ; Sepsis/drug therapy/prevention & control ; Shock, Septic/drug therapy/prevention & control
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2012-03-16
    Description: Viral infection is commonly associated with virus-driven hijacking of host proteins. Here we describe a novel mechanism by which influenza virus affects host cells through the interaction of influenza non-structural protein 1 (NS1) with the infected cell epigenome. We show that the NS1 protein of influenza A H3N2 subtype possesses a histone-like sequence (histone mimic) that is used by the virus to target the human PAF1 transcription elongation complex (hPAF1C). We demonstrate that binding of NS1 to hPAF1C depends on the NS1 histone mimic and results in suppression of hPAF1C-mediated transcriptional elongation. Furthermore, human PAF1 has a crucial role in the antiviral response. Loss of hPAF1C binding by NS1 attenuates influenza infection, whereas hPAF1C deficiency reduces antiviral gene expression and renders cells more susceptible to viruses. We propose that the histone mimic in NS1 enables the influenza virus to affect inducible gene expression selectively, thus contributing to suppression of the antiviral response.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598589/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3598589/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Marazzi, Ivan -- Ho, Jessica S Y -- Kim, Jaehoon -- Manicassamy, Balaji -- Dewell, Scott -- Albrecht, Randy A -- Seibert, Chris W -- Schaefer, Uwe -- Jeffrey, Kate L -- Prinjha, Rab K -- Lee, Kevin -- Garcia-Sastre, Adolfo -- Roeder, Robert G -- Tarakhovsky, Alexander -- 1K99AI095320-01/AI/NIAID NIH HHS/ -- CA129325/CA/NCI NIH HHS/ -- HHSN266200700010C/PHS HHS/ -- R01 CA129325/CA/NCI NIH HHS/ -- R01AI046954/AI/NIAID NIH HHS/ -- R01AI068058/AI/NIAID NIH HHS/ -- U19AI083025/AI/NIAID NIH HHS/ -- England -- Nature. 2012 Mar 14;483(7390):428-33. doi: 10.1038/nature10892.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, 1230 York Avenue, New York, New York 10065, USA. imarazzi@rockefeller.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/22419161" target="_blank"〉PubMed〈/a〉
    Keywords: Amino Acid Sequence ; *Gene Expression Regulation/immunology ; Histones/chemistry/*metabolism ; Humans ; Influenza A Virus, H3N2 Subtype/genetics/*metabolism/pathogenicity ; Influenza, Human/*genetics/*immunology/pathology/virology ; *Molecular Mimicry ; Molecular Sequence Data ; Nuclear Proteins/antagonists & inhibitors/metabolism ; Protein Binding ; Transcription, Genetic/immunology ; Viral Nonstructural Proteins/chemistry/*metabolism
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2012-12-14
    Description: Fragile X syndrome (FXS) is a multi-organ disease that leads to mental retardation, macro-orchidism in males and premature ovarian insufficiency in female carriers. FXS is also a prominent monogenic disease associated with autism spectrum disorders (ASDs). FXS is typically caused by the loss of fragile X mental retardation 1 (FMR1) expression, which codes for the RNA-binding protein FMRP. Here we report the discovery of distinct RNA-recognition elements that correspond to the two independent RNA-binding domains of FMRP, in addition to the binding sites within the messenger RNA targets for wild-type and I304N mutant FMRP isoforms and the FMRP paralogues FXR1P and FXR2P (also known as FXR1 and FXR2). RNA-recognition-element frequency, ratio and distribution determine target mRNA association with FMRP. Among highly enriched targets, we identify many genes involved in ASD and show that FMRP affects their protein levels in human cell culture, mouse ovaries and human brain. Notably, we discovered that these targets are also dysregulated in Fmr1(-/-) mouse ovaries showing signs of premature follicular overdevelopment. These results indicate that FMRP targets share signalling pathways across different cellular contexts. As the importance of signalling pathways in both FXS and ASD is becoming increasingly apparent, our results provide a ranked list of genes as basis for the pursuit of new therapeutic targets for these neurological disorders.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528815/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3528815/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ascano, Manuel Jr -- Mukherjee, Neelanjan -- Bandaru, Pradeep -- Miller, Jason B -- Nusbaum, Jeffrey D -- Corcoran, David L -- Langlois, Christine -- Munschauer, Mathias -- Dewell, Scott -- Hafner, Markus -- Williams, Zev -- Ohler, Uwe -- Tuschl, Thomas -- HD068546/HD/NICHD NIH HHS/ -- K08 HD068546/HD/NICHD NIH HHS/ -- R01 GM104962/GM/NIGMS NIH HHS/ -- R01 MH080442/MH/NIMH NIH HHS/ -- UL1RR024143/RR/NCRR NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2012 Dec 20;492(7429):382-6. doi: 10.1038/nature11737. Epub 2012 Dec 12.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Laboratory of RNA Molecular Biology, The Rockefeller University, New York, New York 10065, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23235829" target="_blank"〉PubMed〈/a〉
    Keywords: Animals ; Base Sequence ; Binding Sites ; Brain/metabolism ; Child ; Child Development Disorders, Pervasive/genetics/metabolism ; Cross-Linking Reagents ; Female ; Fragile X Mental Retardation Protein/*genetics/*metabolism ; Gene Expression Regulation/*genetics ; HEK293 Cells ; Humans ; Immunoprecipitation ; Mice ; Molecular Sequence Data ; Multigene Family ; Mutation ; Ovary/metabolism/pathology ; Protein Biosynthesis/*genetics ; RNA, Messenger/*genetics/metabolism ; Regulatory Sequences, Ribonucleic Acid/*genetics ; Response Elements/genetics ; Signal Transduction ; Substrate Specificity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
  • 6
    Publication Date: 2012-10-24
    Description: The hippocampus is a highly plastic brain region particularly susceptible to the effects of environmental stress; it also shows dynamic changes in epigenetic marks in response to stress and learning. We have previously shown that, in the rat, acute (30 min) restraint stress induces a substantial, regionally specific, increase in...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...