ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The S-layer protein SbpA of Bacillus sphaericus CCM 2177 recognizes a pyruvylated secondary cell wall polymer (SCWP) as anchoring structure to the peptidoglycan-containing layer. Data analysis from surface plasmon resonance (SPR) spectroscopy revealed the existence of three different binding sites with high, medium and low affinity for rSbpA on SCWP immobilized to the sensor chip. The shortest C-terminal truncation with specific affinity to SCWP was rSbpA31-318. Surprisingly, rSbpA31-202 comprising the three S-layer-like homology (SLH) motifs did not bind at all. Analysis of the SbpA sequence revealed a 58-amino-acid-long SLH-like motif starting 11 amino acids after the third SLH motif. The importance of this motif for reconstituting the functional SCWP-binding domain was further demonstrated by construction of a chimaeric protein consisting of the SLH domain of SbsB, the S-layer protein of Geobacillus stearothermophilus PV72/p2 and the C-terminal part of SbpA. In contrast to SbsB or its SLH domain which did not recognize SCWP of B. sphaericus CCM 2177 as binding site, the chimaeric protein showed specific affinity. Deletion of 213 C-terminal amino acids of SbpA had no impact on the square (p4) lattice structure, whereas deletion of 350 amino acids was linked to a change in lattice type from square to oblique (p1).
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 745 (1994), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1574-6968
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In order to achieve high level expression and to study the release of a protein capable of self-assembly, the gene encoding the crystalline cell surface (S-layer) protein SbsA of Bacillus stearothermophilus PV72/p6, including its signal sequence, was cloned and expressed in Bacillus subtilis. To obtain high level expression, a tightly regulated, xylose-inducible, stably replicating multicopy-plasmid vector was constructed. After induction of expression, the S-layer protein made up about 15% of the total cellular protein content, which was comparable to the SbsA content of B. stearothermophilus PV72/p6 cells. During all growth stages, SbsA was poorly secreted to the ambient cellular environment by B. subtilis. Extraction of whole cells with guanidine hydrochloride showed that in late stationary growth phase cells 65% of the synthesised SbsA was retained in the peptidoglycan-containing layer, indicating that the rigid cell wall layer was a barrier for efficient SbsA secretion. Electron microscopic investigation revealed that SbsA release from the peptidoglycan-containing layer started in the late stationary growth phase at distinct sites at the cell surface leading to the formation of extracellular self-assembly products which did not adhere to the cell wall surface. In addition, intracellular sheet-like SbsA self-assembly products which followed the curvature of the cell became visible in partly lysed cells. Intracellularly formed self-assembly products remained intact even after complete lysis of the rigid cell envelope layer.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Although S-layers are being increasingly identified on Bacteria and Archaea, it is enigmatic that in most cases S-layer function continues to elude us. In a few instances, S-layers have been shown to be virulence factors on pathogens (e.g. Campylobacter fetus ssp. fetus and Aeromonas salmonicida), protective against Bdellovibrio, a depository for surface-exposed enzymes (e.g. Bacillus stearothermophilus), shape-determining agents (e.g. Thermoproteus tenax) and nucleation factors for fine-grain mineral development (e.g. Synechococcus GL 24). Yet, for the vast majority of S-layered bacteria, the natural function of these crystalline arrays continues to be evasive. The following review up-dates the functional basis of S-layers and describes such diverse topics as the effect of S-layers on the Gram stain, bacteriophage adsorption in lactobacilli, phagocytosis by human polymorphonuclear leukocytes, the adhesion of a high-molecular-mass amylase, outer membrane porosity, and the secretion of extracellular enzymes of Thermoanaerobacterium. In addition, the functional aspect of calcium on the Caulobacter S-layer is explained.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: The wealth of information existing on the general principle of S-layers has revealed a broad application potential. The most relevant features exploited in applied S-layer research are: (i) pores passing through S-layers show identical size and morphology and are in the range of ultrafiltration membranes; (ii) functional groups on the surface and in the pores are aligned in well-defined positions and orientations and accessible for binding functional molecules in very precise fashion; (iii) isolated S-layer subunits from many organisms are capable of recrystallizing as closed monolayers onto solid supports at the air-water interface, on lipid monolayers or onto the surface of liposomes. Particularly their repetitive physicochemical properties down to the subnanometer scale make S-layers unique structures for functionalization of surfaces and interfaces down to the ultimate resolution limit. The following review focuses on selected applications in biotechnology, diagnostics, vaccine development, biomimetic membranes, supramolecular engineering and nanotechnology. Despite progress in the characterization of S-layers and the exploitation of S-layers for the applications described in this chapter, it is clear that the field lags behind others (e.g. enzyme engineering) in applying recent advances in protein engineering. Genetic modification and targeted chemical modification would allow several possibilities including the manipulation of pore permeation properties, the introduction of switches to open and close the pores, and the covalent attachment to surfaces or other macromolecules through defined sites on the S-layer protein. The application of protein engineering to S-layers will require the development of straightforward expression systems, the development of simple assays for assembly and function that are suitable for the rapid screening of numerous mutants and the acquisition of structural information at atomic resolution. Attention should be given to these areas in the coming years.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    ISSN: 1574-6976
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: In this chapter we report on the molecular biology of crystalline surface layers of different bacterial groups. The limited information indicates that there are many variations on a common theme. Sequence variety, antigenic diversity, gene expression, rearrangements, influence of environmental factors and applied aspects are addressed. There is considerable variety in the S-layer composition, which was elucidated by sequence analysis of the corresponding genes. In Corynebacterium glutamicum one major cell wall protein is responsible for the formation of a highly ordered, hexagonal array. In contrast, two abundant surface proteins form the S-layer of Bacillus anthracis. Each protein possesses three S-layer homology motifs and one protein could be a virulence factor. The antigenic diversity and ABC transporters are important features, which have been studied in methanogenic archaea. The expression of the S-layer components is controlled by three genes in the case of Thermus thermophilus. One has repressor activity on the S-layer gene promoter, the second codes for the S-layer protein. The rearrangement by reciprocal recombination was investigated in Campylobacter fetus. 7–8 S-layer proteins with a high degree of homology at the 5′ and 3′ ends were found. Environmental changes influence the surface properties of Bacillus stearothermophilus. Depending on oxygen supply, this species produces different S-layer proteins. Finally, the molecular bases for some applications are discussed. Recombinant S-layer fusion proteins have been designed for biotechnology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford BSL : Blackwell Science Ltd
    Molecular microbiology 19 (1996), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: The cell surface of Bacillus stearothermophilus PV72 is covered by a regular surface layer (S-layer) composed of a single species of protein, SbsA, with a molecular weight of 130 000. Recently, the sequence of the corresponding gene (sbsA) has been determined. The SbsA coding region including the signal sequence was cloned as a polymerase chain reaction (PCR) product into a low-copy-number vector under the transcriptional control of the λpL promoter. Expression of sbsA was shown to be thermally inducible from the resulting vector pBK4 in a strain of Escherichia coli expressing the λcI857 from the chromosome. As shown by ultrathin sectioning of whole cells and immunogold labelling using SbsA-specific antibodies, expression of sbsA in E. coli led to accumulation of sheet-like self-assembling products of the protein in the cytoplasm. No SbsA protein was detected either in the periplasm or in the supernatant fractions. Long-term expression of sbsA from pBK4, including in the late stationary phase, did not lead to degradation of SbsA.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Molecular microbiology 10 (1993), S. 0 
    ISSN: 1365-2958
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology , Medicine
    Notes: Crystalline arrays of proteinaceous subunits forming surface layers (S-layers) are one of the most commonly observed prokaryotic cell envelope structures. They are ubiquitous amongst Gram-positive and Gram-negative archaeobacteria and eubacteria and, if present, account for the major protein species produced by the cells. S-layers can provide organisms with a selection advantage by providing various functions including protective coats, molecular sieves, ion traps and structures involved in cell surface interactions. S-layers were identified as contributing to virulence when present as a structural component of pathogens. In Gram-negative archaeobacteria they are involved in determining cell shape and cell division. The crystalline arrays reveal a broad-application potential in biotechnology, vaccine development and molecular nanotechnology.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Abstract The crystalline cell surface layer (S-layer) from Bacillus stearothermophilis PV72 was used as a matrix for reversible immobilization of β-d-galactosidase via disulphide bonds. In order to obtain an immobilization matrix stable towards acid, alkali and reducing agents such as dithiothreitol (DTT), the S-layer subunits were first cross-linked with glutaraldehyde. This was done in a way whereby 75% of the free amino groups remained unmodified, and then could be completely converted into sulphhydryl groups upon reaction with the monofunctional imidoester iminothiolane. After activation of the sulphhydryl groups with 2,2′-dipyridyldisulphide, 550 μg β-d-galactosidase could be immobilized per milligram of S-layer protein, which corresponds to one β-d-galactosidase molecule [relative molecular mass (Mr), 116000] per two S-layer subunits (Mr, 130 000). At least 90% of the sulphhydryl groups from the S-layer protein could be regenerated for further activation by cleaving the disulphide bonds with DTT. In comparative studies β-d-galactosidase was linked to carbodiimide-activated carboxyl groups of the S-layer protein.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Springer
    Applied microbiology and biotechnology 30 (1989), S. 184-189 
    ISSN: 1432-0614
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Summary Carboxyl groups present on the outer face of the hexagonally ordered S-layer lattices from Bacillus stearothermophilus PV72 and Clostridium thermohydrosulfuricum L111-69 were activated with carbodiimide. The reaction of the activated carboxyl groups with free amino groups of low molecular weight nucleophiles was controlled by labelling with polycationized ferritin, a net positively charged topographical marker for electron microscopy, which densely binds to S-layers possessing free carboxyl groups. Carbodiimide-activated carboxyl groups were also allowed to react with amino groups of ferritin (MW 440 000) and invertase (MW 270 000). Covalent attachment of ferritin was examined by electron microscopy. Using invertase, approximately 1 mg enzyme was bound per mg S-layer protein indicating a high packing density of invertase molecules on the outer face of the S-layer lattice. The immobilized invertase retained 70% of its original activity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...