ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-01
    Description: The dissolution of most common multicomponent silicate minerals and glasses is typically incongruent, as shown by the nonstoichiometric release of the solid phase components. This results in the formation of so-called surface leached layers. Due to the important effects these leached layers may have on mineral dissolution rates and secondary mineral formation, they have attracted a great deal of research. However, the mechanism of leached layer formation is a matter of vigorous debate. Here we report on an in situ atomic force microscopy (AFM) study of the dissolution of wollastonite, CaSiO 3 , as an example of leached layer formation during dissolution. Our in situ AFM results provide, for the first time, clear direct experimental evidence that leached layers are formed in a tight interface-coupled two-step process: stoichiometric dissolution of the pristine mineral surfaces and subsequent precipitation of a secondary phase (most likely amorphous silica) from a supersaturated boundary layer of fluid in contact with the mineral surface. This occurs despite the fact that the bulk solution is undersaturated with respect to the secondary phase. Our results differ significantly from the concept of preferential leaching of cations, as postulated by most currently accepted incongruent dissolution models. This interface-coupled dissolution-precipitation model has important implications in understanding and evaluating dissolution kinetics of major rock-forming minerals.
    Print ISSN: 0091-7613
    Electronic ISSN: 1943-2682
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2012-02-01
    Description: Atomic force microscopy (AFM) enables in situ observations of mineral–fluid reactions to be made at a nanoscale. During the past 20 years, the direct observation of mineral surfaces at molecular resolution during dissolution and growth has made significant contributions toward improvements in our understanding of the dynamics of mineral–fluid reactions at the atomic scale. Observations and kinetic measurements of dissolution and growth from AFM experiments give valuable evidence for crystal dissolution and growth mechanisms, either confirming existing models or revealing their limitations. Modifications to theories can be made in the light of experimental evidence generated by AFM. Significant changes in the kinetics and mechanisms of crystallization and dissolution processes occur when the chemical and physical parameters of solutions, including the presence of impurity molecules or background electrolytes, are altered. Calcite has received considerable attention in AFM studies due to its central role in geochemical and biomineralization processes. This review summarizes the extensive literature on the dissolution and growth of calcite that has been generated by AFM studies, including the influence of fluid characteristics such as supersaturation, solution stoichiometry, pH, temperature and the presence of impurities.
    Print ISSN: 0026-461X
    Electronic ISSN: 1471-8022
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...