ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-04-11
    Description: Ground motions of the 2011 Tohoku earthquake recorded at Onahama port (Iwaki, Fukushima prefecture) rank among the highest accelerations ever observed, with the peak amplitude of the 3-D acceleration vector approaching 2 g . The response of the site was distinctively non-linear, as indicated by the presence of horizontal acceleration spikes which have been linked to cyclic mobility during similar observations. Compared to records of weak ground motions, the response of the site during the M w 9.1 earthquake was characterized by increased amplification at frequencies above 10 Hz and in peak ground acceleration. This behaviour contrasts with the more common non-linear response encountered at non-liquefiable sites, which results in deamplification at higher frequencies. We simulate propagation of SH waves through the dense sand deposit using a non-linear finite difference code that is capable of modelling the development of excess pore water pressure. Dynamic soil parameters are calibrated using a direct search method that minimizes the difference between observed and simulated acceleration envelopes and response spectra. The finite difference simulations yield surface acceleration time-series that are consistent with the observations in shape and amplitude, pointing towards soil dilatancy as a likely explanation for the high-frequency pulses recorded at Onahama port. The simulations also suggest that the occurrence of high-frequency spikes coincided with a rapid increase in pore water pressure in the upper part of the sand deposit between 145 and 170 s. This sudden increase is possibly linked to a burst of high-frequency energy from a large slip patch below the Iwaki region.
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Published by Oxford University Press on behalf of The Deutsche Geophysikalische Gesellschaft (DGG) and the Royal Astronomical Society (RAS).
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-12-05
    Description: High-frequency acceleration pulses recorded during recent damaging earthquakes show that the evolution of pore water pressure in liquefiable soils may have a significant effect on earthquake ground motions. Such observations suggest that advanced constitutive soil models capable of treating the phase transformation behavior of liquefiable soils should be used for reliable predictions of earthquake site response. Advanced constitutive models require knowledge of the dilatancy parameters that describe the potential of soils to generate excess pore water pressure. We demonstrate that these dilatancy parameters can be determined directly from field observations by inverting strong motions recorded on vertical arrays (i.e., installation of surface and borehole accelerometers). We analyze the records of the 1987 M  6.6 Superstition Hills earthquake, the 1993 M  7.8 Kushiro-Oki, Japan, earthquake, and the 2011 M  9.0 Tohoku, Japan, earthquake to quantify the dilatancy parameters at the Wildlife liquefaction array (WLA), at Kushiro port (KP), and the KiK-net site FKSH14, respectively. Synthetic acceleration time series obtained from the minimum misfit models are describing the time and frequency evolution of the observations more precisely than previously published models. Dilatancy parameters obtained for WLA and KP suggest that soils at these sites were more resistant to liquefaction than predicted from field and laboratory tests. We also infer a high liquefaction resistance (CRR 7.5 =0.5) for the site FKSH14, which exhibited dilation pulses of up to during the Tohoku earthquake. These findings indicate that even soils with a strong liquefaction resistance may exhibit cyclic mobility effects during strong and prolonged ground motions.
    Print ISSN: 0037-1106
    Electronic ISSN: 1943-3573
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...