ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
  • 1
    Publication Date: 2024-04-27
    Description: The objective of this study was to assess experimentally the potential impact of anthropogenic pH perturbation (ApHP) on concentrations of dimethyl sulfide (DMS) and dimethylsulfoniopropionate (DMSP), as well as processes governing the microbial cycling of sulfur compounds. A summer planktonic community from surface waters of the Lower St. Lawrence Estuary was monitored in microcosms over 12 days under three pCO2 targets: 1 * pCO2 (775 µatm), 2 * pCO2 (1,850 µatm), and 3 * pCO2 (2,700 µatm). A mixed phytoplankton bloom comprised of diatoms and unidentified flagellates developed over the course of the experiment. The magnitude and timing of biomass buildup, measured by chlorophyll a concentration, changed in the 3 * pCO2 treatment, reaching about half the peak chlorophyll a concentration measured in the 1 * pCO2 treatment, with a 2-day lag. Doubling and tripling the pCO2 resulted in a 15% and 40% decline in average concentrations of DMS compared to the control. Results from 35S-DMSPd uptake assays indicated that neither concentrations nor microbial scavenging efficiency of dissolved DMSP was affected by increased pCO2. However, our results show a reduction of the mean microbial yield of DMS by 34% and 61% in the 2 * pCO2 and 3 * pCO2 treatments, respectively. DMS concentrations correlated positively with microbial yields of DMS (Spearman's ρ = 0.65; P 〈 0.001), suggesting that the impact of ApHP on concentrations of DMS in diatom-dominated systems may be strongly linked with alterations of the microbial breakdown of dissolved DMSP. Findings from this study provide further empirical evidence of the sensitivity of the microbial DMSP switch under ApHP. Because even small modifications in microbial regulatory mechanisms of DMSP can elicit changes in atmospheric chemistry via dampened efflux of DMS, results from this study may contribute to a better comprehension of Earth's future climate.
    Keywords: Alkalinity, total; Aragonite saturation state; Bacteria, cells; Bicarbonate ion; Bottles or small containers/Aquaria (〈20 L); Brackish waters; Calcite saturation state; Calculated using seacarb after Nisumaa et al. (2010); Carbon, inorganic, dissolved; Carbonate ion; Carbonate system computation flag; Carbon dioxide; Cells, other; Chlorophyll a; Choanoflagellates; Chrysophyceae; Community composition and diversity; Cryptophyceae; DATE/TIME; Diatoms; Dimethyl sulfide; Dimethyl sulfide, yield; Dimethylsulfoniopropionate, dissolved; Dimethylsulfoniopropionate, total; Dimethylsulfoniopropionate rate; Dinoflagellates; Duration, number of days; Entire community; Flagellates indeterminata; Fugacity of carbon dioxide (water) at sea surface temperature (wet air); Identification; Laboratory experiment; MULT; Multiple investigations; Nitrate; North Atlantic; OA-ICC; Ocean Acidification International Coordination Centre; Other metabolic rates; Partial pressure of carbon dioxide (water) at sea surface temperature (wet air); Pelagos; pH; Phosphate; Potentiometric titration; Prasinophyceae; Primary production/Photosynthesis; Primary production of carbon, dissolved; Primary production of carbon, particulate; Primary production of carbon, total; Prymnesiophyceae; Quebec, Canada; Replicate; Salinity; Silicate; Spectrophotometric; StLawrence_Estuary; Sulfur, 35S; Temperate; Temperature, water; Type
    Type: Dataset
    Format: text/tab-separated-values, 2577 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Damm, Ellen; Helmke, Elisabeth; Thoms, Silke; Schauer, Ursula; Nöthig, Eva-Maria; Bakker, Karel; Kiene, Ronald P (2010): Methane production in aerobic oligotrophic surface water in the central Arctic Ocean. Biogeosciences, 7, 1099-1108, https://doi.org/10.5194/bg-7-1099-2010
    Publication Date: 2024-07-01
    Description: A methane surplus relative to the atmospheric equilibrium is a frequently observed feature of ocean surface water. Despite the common fact that biological processes are responsible for its origin, the formation of methane in aerobic surface water is still poorly understood. We report on methane production in the central Arctic Ocean, which was exclusively detected in Pacific derived water but not nearby in Atlantic derived water. The two water masses are distinguished by their different nitrate to phosphate ratios. We show that methane production occurs if nitrate is depleted but phosphate is available as a P source. Apparently the low N:P ratio enhances the ability of bacteria to compete for phosphate while the phytoplankton metabolite dimethylsulfoniopropionate (DMSP) is utilized as a C source. This was verified by experimentally induced methane production in DMSP spiked Arctic sea water. Accordingly we propose that methylated compounds may serve as precursors for methane and thermodynamic calculations show that methylotrophic methanogenesis can provide energy in aerobic environments.
    Keywords: Arctic Ocean; ARK-XXII/2; Bottle number; CTD/Rosette; CTD/Rosette, ultra clean; CTD-RO; CTD-UC; Date/Time of event; DEPTH, water; Dimethylsulfoniopropionate; Elevation of event; Event label; Gas chromatography; GEOTRACES; Global marine biogeochemical cycles of trace elements and their isotopes; Laptev Sea; Latitude of event; Longitude of event; Mass spectrometer Finnigan Delta Plus XP; Methane; Polarstern; PS70/260-9; PS70/263-1; PS70/264-1; PS70/266-1; PS70/268-1; PS70/271-2; PS70/272-1; PS70/279-7; PS70/280-1; PS70/284-1; PS70/285-2; PS70/291-1; PS70/295-1; PS70/299-1; PS70/301-5; PS70/301-7; PS70/306-1; PS70/308-1; PS70/310-1; PS70/314-1; PS70/321-1; PS70/326-1; PS70/328-11; PS70/328-9; PS70/331-1; PS70/335-1; PS70/338-3; PS70/338-5; PS70/340-1; PS70/342-7; PS70/342-9; PS70/345-1; PS70/346-1; PS70/349-2; PS70/352-3; PS70/352-5; PS70/358-1; PS70/362-1; PS70/403-1; PS70/405-1; PS70/407-2; PS70/407-4; PS70/408-1; PS70/409-1; PS70/410-1; PS70/411-2; PS70 SPACE DAMOCLES; δ13C, methane
    Type: Dataset
    Format: text/tab-separated-values, 1139 data points
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-12-09
    Description: Ice-wedges are common permafrost features formed over hundreds to thousands of years of repeated frost cracking and ice vein growth. We used field and remote sensing observations to assess changes in areas dominated by ice-wedges, and we simulated the effects of those changes on watershed-scale hydrology. We show that top melting of ice-wedges and subsequent ground subsidence has occurred at multiple sites in the North American and Russian Arctic. At most sites, melting ice-wedges have initially resulted in increased wetness contrast across the landscape, evident as increased surface water in the ice-wedge polygon troughs and somewhat drier polygon centers. Most areas are becoming more heterogeneous with wetter troughs, more small ponds (themokarst pits forming initially at ice-wedge intersections and then spreading along the troughs) and drier polygon centers. Some areas with initial good drainage, such as near creeks, lake margins, and in hilly terrain, high-centered polygons form an overall landscape drying due to a drying of both polygon centers and troughs. Unlike the multi-decadal warming observed in permafrost temperatures, the ice-wedge melting that we observed appeared as a sub-decadal response, even at locations with low mean annual permafrost temperatures (down to −14 °C). Gradual long-term air and permafrost warming combined with anomalously warm summers or deep snow winters preceded the onset of the ice-wedge melting. To assess hydrological impacts of ice-wedge melting, we simulated tundra water balance before and after melting. Our coupled hydrological and thermal model experiments applied over hypothetical polygon surfaces suggest that (1) ice-wedge melting that produces a connected trough-network reduces inundation and increases runoff, and that (2) changing patterns of snow distribution due to differential ground subsidence has a major control on ice-wedge polygon tundra water balance despite an identical snow water equivalent at the landscape-scale. These decimeter-scale geomorphic changes are expected to continue in permafrost regions dominated by ice-wedge polygons, with implications for land-atmosphere and land-ocean fluxes of water, carbon, and energy.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Conference , notRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2021-07-08
    Description: General Circulation Models (GCMs) may be useful in estimating the ecological impacts of global climatic change. We analyzed seasonal weather patterns over the conterminous United States and determined that regional patterns of rainfall seasonality appear to control the distributions of the Nation's major biomes. These regional patterns were compared to the output from three GCMs for validation. The models appear to simulate the appropriate seasonal climates in the northern tier of states. However, the spatial extent of these regions is distorted. None of the models accurately portrayed rainfall seasonalities in the southern tier of states, where biomes are primarily influenced by the Bermuda High.
    Keywords: Atmospheric Sciences ; PACLIM
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 19-26
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-08-16
    Description: Ice wedges are common features of the subsurface in permafrost regions. They develop by repeated frost cracking and ice vein growth over hundreds to thousands of years. Ice-wedge formation causes the archetypal polygonal patterns seen in tundra across the Arctic landscape. Here we use field and remote sensing observations to document polygon succession due to ice-wedge degradation and trough development in ten Arctic localities over sub-decadal timescales. Initial thaw drains polygon centres and forms disconnected troughs that hold isolated ponds. Continued ice-wedge melting leads to increased trough connectivity and an overall draining of the landscape. We find that melting at the tops of ice wedges over recent decades and subsequent decimetre-scale ground subsidence is a widespread Arctic phenomenon. Although permafrost temperatures have been increasing gradually, we find that ice-wedge degradation is occurring on sub-decadal timescales. Our hydrological model simulations show that advanced ice-wedge degradation can significantly alter the water balance of lowland tundra by reducing inundation and increasing runoff, in particular due to changes in snow distribution as troughs form. We predict that ice-wedge degradation and the hydrological changes associated with the resulting differential ground subsidence will expand and amplify in rapidly warming permafrost regions.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev , info:eu-repo/semantics/article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15604 | 8 | 2014-11-10 20:59:44 | 15604
    Publication Date: 2021-07-08
    Description: EXTRACT (SEE PDF FOR FULL ABSTRACT):Current projections of the response of the biosphere to global climatic change indicate as much as 50 to 90% spatial displacement of extratropical biomes. The mechanism of spatial shift could be dominated either by competitive displacement of northern biomes by southern biomes or by drought-induced dieback of areas susceptible to change. The current suite of global biosphere models cannot distinguish between these two processes, hence the need for a mechanistically based biome model. The first steps have been taken toward development of a rule-based, mechanistic model of regional biomes at a continental scale. ... The model is in an early stage of development and will require several enhancements, including: explicit simulation of potential evapotranspiration, extension to boreal and tropical biomes, a shift from steady-state to transient dynamics, and validation on other continents.
    Keywords: Atmospheric Sciences ; Ecology ; PACLIM
    Repository Name: AquaDocs
    Type: conference_item
    Format: application/pdf
    Format: application/pdf
    Format: 35-52
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    Oceanography Society
    Publication Date: 2022-05-25
    Description: Author Posting. © Oceanography Society, 2007. This article is posted here by permission of Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 20, 2 (2007): 117-123.
    Description: The ocean represents a major reservoir of sulfur on Earth, with large quantities in the form of dissolved sulfate and sedimentary minerals (e.g., gypsum and pyrite). Sulfur occurs in a variety of valence states, ranging from –2 (as in sulfide and reduced organic sulfur) to +6 (as in sulfate). Sulfate is the most stable form of sulfur on today’s oxic Earth; weathering and leaching of rocks and sediments are its main sources to the ocean. In addition, the reduced inorganic forms of sulfur, with oxidation states of –2 and 0 (as in elemental sulfur) are quite common in anoxic environments, with sulfur compounds of mixed valence states (e.g., thiosulfate and polythionates) produced transiently. The natural release of volatile organic sulfur compounds from the ocean, mainly as dimethyl sulfide (DMS), transports sulfur from the ocean to terrestrial regions, and it also affects atmospheric chemistry and the climate system. While they remain very important, natural sulfur emissions have currently been overtaken by anthropogenic emissions, primarily from the burning of fossil fuels.
    Description: Preparation of this manuscript was partially supported by National Science Foundation grant OCE-0452333 and a fellowship from the Hanse- Wissenschaftskolleg (http://www. h-w-k.de) to SMS, National Science Foundation grants OPP-0230497 and OPP-0083078 to RPK, as well as the Research Center Ocean Margins (RCOM) of the University of Bremen (Germany) to HNSV (RCOM-Nr. 0476).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2022-05-26
    Description: Author Posting. © American Geophysical Union, 2004. This article is posted here by permission of American Geophysical Union for personal use, not for redistribution. The definitive version was published in Geophysical Research Letters 31 (2004): L11307, doi:10.1029/2004GL019863.
    Description: The photochemistry of dimethylsulfide (DMS) was examined in the Southern Ocean to assess its impact on the biogeochemical dynamics of DMS in Antarctic waters. Very high DMS photolysis rate constants (0.16–0.23 h−1) were observed in surface waters exposed to full sunlight. DMS photolysis rates increased linearly with added nitrate concentrations, and 35% of the DMS loss in unamended samples was attributed to the photochemistry of ambient nitrate (29 μM). Experiments with optical filters showed that the UV-A band of sunlight (320–400 nm) accounted for ~65% of DMS photolysis suggesting that dissolved organic matter was the main photosensitizer for DMS photolysis. During the austral spring, DMS photolysis was the dominant loss mechanism under non-bloom and non-ice cover conditions owing to the high doses and deep penetration of UV radiation in the water column, low observed microbial consumption rates, and high in situ nitrate concentrations.
    Description: This work was supported by NSF (OPP- 0230499, DJK; OPP-0230497, RPK).
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    Biological and Chemical Oceanography Data Management Office (BCO-DMO). Contact: bco-dmo-data@whoi.edu
    Publication Date: 2022-05-27
    Description: Dataset: Organic sulfur in the subarctic NE Pacific
    Description: Data include standing stocks and rates for organic sulfur compounds during summer in the subarctic Northeast Pacific. Water samples were collected on R/V Oceanus cruises OC1607A in July 2016 and OC1708A in August 2017. For a complete list of measurements, refer to the full dataset description in the supplemental file 'Dataset_description.pdf'. The most current version of this dataset is available at: https://www.bco-dmo.org/dataset/705636
    Description: NSF Division of Ocean Sciences (NSF OCE) OCE-1436576
    Repository Name: Woods Hole Open Access Server
    Type: Dataset
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution 4.0 License. The definitive version was published in Biogeosciences 16(8), (2019):1729-1754, doi:10.5194/bg-16-1729-2019.
    Description: The northeast subarctic Pacific (NESAP) is a globally important source of the climate-active gas dimethylsulfide (DMS), yet the processes driving DMS variability across this region are poorly understood. Here we examine the spatial distribution of DMS at various spatial scales in contrasting oceanographic regimes of the NESAP. We present new high-spatial-resolution measurements of DMS across hydrographic frontal zones along the British Columbia continental shelf, together with key environmental variables and biological rate measurements. We combine these new data with existing observations to produce a revised summertime DMS climatology for the NESAP, yielding a broader context for our sub-mesoscale process studies. Our results demonstrate sharp DMS concentration gradients across hydrographic frontal zones and suggest the presence of two distinct DMS cycling regimes in the NESAP, corresponding to microphytoplankton-dominated waters along the continental shelf and nanoplankton-dominated waters in the cross-shelf transitional zone. DMS concentrations across the continental shelf transition (range 〈 1–10 nM, mean 3.9 nM) exhibited positive correlations to salinity (r=0.80), sea surface height anomaly (SSHA; r=0.51), and the relative abundance of prymnesiophyte and dinoflagellates (r=0.89). In contrast, DMS concentrations in nearshore coastal transects (range 〈 1–24 nM, mean 6.1 nM) showed a negative correlation with salinity (r=−0.69; r=−0.78) and SSHA (r=−0.81; r=−0.75) and a positive correlation to relative diatom abundance (r=0.88; r=0.86). These results highlight the importance of bloom-driven DMS production in continental shelf waters of this region and the role of prymnesiophytes and dinoflagellates in DMS cycling further offshore. In all areas, the rate of DMS consumption appeared to be an important control on observed concentration gradients, with higher DMS consumption rate constants associated with lower DMS concentrations. We compiled a data set of all available summertime DMS observations for the NESAP (including previously unpublished results) to examine the performance of several existing algorithms for predicting regional DMS concentrations. None of these existing algorithms was able to accurately reproduce observed DMS distributions across the NESAP, although performance was improved by the use of regionally tuned coefficients. Based on our compiled observations, we derived an average summertime distribution map for DMS concentrations and sea–air fluxes across the NESAP, estimating a mean regional flux of 0.30 Tg of DMS-derived sulfur to the atmosphere during the summer season.
    Description: We dedicate this article to the memory of Ronald P. Kiene, a wonderful scientist, mentor and friend. His contributions to DMS and DMSP research have shaped our field over the past 3 decades, and he will be missed by many around the world. We also wish to thank many individuals involved in data collection and logistical aspects of the cruises presented here, including scientists from the Institute of Ocean Sciences, the captain and crew of the R/V Oceanus and the CCGS John P. Tully, and members of the Tortell, Kiene, Levine and Hatton laboratory groups. We also thank Theodore Ahlvin for GIS support and both reviewers for their insightful comments. Support for this work was provided from the US National Science Foundation (grant no. 1436344) and from the Natural Sciences and Engineering Research Council of Canada.
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...