ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Ihre E-Mail wurde erfolgreich gesendet. Bitte prüfen Sie Ihren Maileingang.

Leider ist ein Fehler beim E-Mail-Versand aufgetreten. Bitte versuchen Sie es erneut.

Vorgang fortführen?

Exportieren
  • 1
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] The outer limit of the Solar System is often considered to be at the distance from the Sun where the solar wind changes from supersonic to subsonic flow. Theory predicts that a termination shock marks this boundary, with locations ranging from a few to over 100 au ...
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 2
    Digitale Medien
    Digitale Medien
    [s.l.] : Macmillian Magazines Ltd.
    Nature 421 (2003), S. 920-922 
    ISSN: 1476-4687
    Quelle: Nature Archives 1869 - 2009
    Thema: Biologie , Chemie und Pharmazie , Medizin , Allgemeine Naturwissenschaft , Physik
    Notizen: [Auszug] The space environments—or magnetospheres—of magnetized planets emit copious quantities of energetic neutral atoms (ENAs) at energies between tens of electron volts to hundreds of kiloelectron volts (keV). These energetic atoms result from charge exchange between magnetically trapped ...
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 3
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 33 (1973), S. 241-257 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We propose that the coronal source longitude and latitude of solar wind plasma can be estimated within ∼ 10°. Previous writers have argued that the solar wind in the ecliptic should originate near the equator and that a quasi-radial hypervelocity (QRH) approximation (constant radial flow) is valid beyond the magnetohydrodynamic critical points. We demonstrate that an extension of the QRH approximation (as if the solar wind flowed radially with constant velocity from the center of the Sun) yields a proper estimate of the high coronal source location at the ‘release zone’ where the solar wind makes its transition to radial interplanetary flow. This ‘extrapolated’ QRH (or EQRH) approximation succeeds because the two main corrections to this source estimate, coronal corotation and interplanetary acceleration, tend to cancel (the former correcting the source location eastward, the latter westward). Although this ‘ideal spiral’ approximation was first suggested by Snyder and Neugebauer (1966), only recently has it been demonstrated that it relates a wide range of interplanetary plasma, magnetic field and energetic particle data to observed coronal magnetic structure. We estimate quantitatively the error in the EQRH approximation by comparison with steady-state streamlines predicted by azimuthally independent and dependent theoretical solutions to the steady-state plasma equations. We find the error in both cases ⩽ 10° in longitude and therefore suggest that the EQRH approximation offers the means to relate observed solar ‘initial conditions’ in the ‘release zone’ directly to interplanetary measurements. If, in addition, the EQRH approximation also leads to agreement with low coronal structure, then there should be a straightforward correspondence to otherwise unobservable high coronal structure.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 4
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 39 (1974), S. 405-408 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract It has recently been suggested that the large scale structure of the interplanetary magnetic field can be deduced solely from solar wind speed measurements. Here it is emphasized that, in addition to speed measurements, direct measurements of the interplanetary field and indirect diagnostics such as measurements of the solar wind kinetic temperature and galactic and solar energetic particle modulations and anisotropics are required to distinguish between open and closed magnetic structures in the solar wind.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 5
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 4 (1968), S. 338-360 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Simultaneous observations of the 7–9 July 1966 solar particle event by energetic particle detectors on three satellites, IMP-III, OGO-III and Explorer 33 are utilized to show that large spatial gradients are present in the fluxes of 0.5–20 meV protons and ≳45 keV electrons. The event is divided into three parts: the ordinary diffusive component, the halo, and the core. The core corotates with the interplanetary field, and therefore it and the surrounding halo are interpreted as spatial features which are connected by the interplanetary magnetic field lines to the vicinity of the flare region. Upper limits to the interplanetary transverse diffusion coefficient for 4–20 meV protons at 1 AU are derived from the width of the halo. These are at least two orders of magnitude less than the parallel diffusion coefficient for the same energy particles. It is argued that the observed flux variations cannot be explained by an impulsive point source injection for any physically reasonable diffusion model. Instead, since the interplanetary transverse-diffusion coefficient is small for these low-energy particles, the observed spatial features are interpreted as the projection to 1 AU by the interplanetary field lines of an extensive injection profile at the sun. The geometry of the injection mechanism is discussed and it is suggested that some temporary storage of the flare particles occurs near the sun.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 6
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 41 (1975), S. 349-366 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract Cross-correlation functions have been computed between green-line intensity (Kislovodsk) and Vela solar wind velocity January–June 1967. They are calculated separately for east and west limb observations in 5° latitude increments, and the solar wind velocites are correlated at their estimated emission times by correcting for the plasma Earth-Sun transit time using the observed velocities. The cross-correlation patterns appear to be dominated by two competing effects: a tendency of quasi-stationary green-line emission and solar wind velocity to anti-correlate; and a tendency of transient green-line emission and solar wind velocity enhancements to correlate positively. We also find evidence for simultaneous (same-day) emission brightenings over 2 to 4 limb quadrants. It is therefore recommended that, following a well-known practice in solar terrestrial studies, recurrent and transient events in both solar wind and green-line emissions should be studied separately.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 7
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 29 (1973), S. 505-525 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract X-ray images of the solar corona, taken on November 24, 1970, showed a magnetically open structure in the low corona which extended from N20W20 to the south pole. Analysis of the measured X-ray intensities shows the density scale height within the structure to be typically a factor of two less than that in the surrounding large scale magnetically closed regions. The structure is identified as a coronal hole. Since there have been several predictions that such a region should be the source of a high velocity stream in the solar wind, wind measurements for the appropriate period were traced back to the Sun by the method of instantaneous ideal spirals. A striking agreement was found between the Carrington longitude of the solar source of a recurrent high velocity solar wind stream and the position of the hole. Solar wind bulk velocity and photospheric magnetic field data from the period 1962–1970 indicate the possible extension of the result to the interpretation of long term variations in the wind pattern.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 8
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We investigate the association of high-speed solar wind with coronal holes during the Skylab mission by: (1) direct comparison of solar wind and coronal X-ray data; (2) comparison of near-equatorial coronal hole area with maximum solar wind velocity in the associated streams; and (3) examination of the correlation between solar and interplanetary magnetic polarities. We find that all large near-equatorial coronal holes seen during the Skylab period were associated with high-velocity solar wind streams observed at 1 AU.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 9
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 51 (1977), S. 459-471 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract When solar wind plasma in the trailing (eastern) edge of a high-speed stream is mapped back to its estimated source in the high corona using the constant radial velocity (EQRH) approximation, a large range of velocities appears to come from a restricted range in longitude, often only a few degrees. This actually constitutes a sharp eastern coronal boundary for the solar wind stream source, and demands that the boundary have a three-dimensional structure. Using interplanetary data, we infer a systematic variation in ‘source altitude’ (identified approximately with the Alfvén point), with faster solar wind attaining its interplanetary characteristics at lower altitudes. This also affects the accuracy of the source longitude estimates, so that we infer a width in the high corona of 4–6° for the source of the trailing edges of streams which appear to originate from a single longitude. We demonstrate that the possible systematic interplanetary effects (in at least some cases) are not large (≲ 2° in heliocentric longitude). The relatively sharp boundaries imply that high-speed streams are well-defined structures all the way down to their low coronal sources, and that the magnetic field structure controls the propagation of the plasma through the corona out to the vicinity of the Alfvén point (≳ 20 R ⊙).
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
  • 10
    Digitale Medien
    Digitale Medien
    Springer
    Solar physics 33 (1973), S. 483-504 
    ISSN: 1573-093X
    Quelle: Springer Online Journal Archives 1860-2000
    Thema: Physik
    Notizen: Abstract We introduce a method for constructing large-scale (∼0.25 AU) interplanetary magnetic field lines using only solar wind velocity from well-separated appropriately located spacecraft. The technique is based on ‘labeling’ the field lines at each spacecraft with their coronal connection longitudes calculated in the EQRH (extrapolated quasi-radial hypervelocity) approximation (Nolte and Roelof, 1973). Even though the EQRH approximation is most applicable to quasi-steady solar wind, we propose that it should also be satisfactorily accurate for moderately evolving conditions. For strongly evolving conditions (e.g., flare-associated plasma) we propose a straightforward correction based on the inferred coronal longitudinal velocity profile. To illustrate the multispacecraft EQRH technique, we perform a calculation in which the interplanetary field lines in a model evolving solar wind disturbance are deduced from model observations at separated spacecraft. Since the expected agreement is found, we use data from Pioneers 8 and 9 and Vela to construct field lines for an unusually quiet period (April 26–30, 1969) and for a flare-associated disturbance accompanied by a Forbush decrease (March 23–25, 1969). The deduced field lines (even though strongly distorted by the disturbance), order the onsets of the Forbush decrease at the separated spacecraft, and the interplanetary plasma and field structures correspond to equatorial structures apparent in Hα synoptic charts of chromospheric magnetic features.
    Materialart: Digitale Medien
    Standort Signatur Erwartet Verfügbarkeit
    BibTip Andere fanden auch interessant ...
Schließen ⊗
Diese Webseite nutzt Cookies und das Analyse-Tool Matomo. Weitere Informationen finden Sie hier...