ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Biotechnology and Bioengineering 53 (1997), S. 415-426 
    ISSN: 0006-3592
    Keywords: hepatocytes ; cell adhesion ; spheroids ; Chemistry ; Biochemistry and Biotechnology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: Cultured hepatocytes typically form multicellular aggregates which are either monolayered or spheroidal in morphology. We propose that the aggregate morphology resulting from a particular cell-substratum interaction has a biophysical basis: when cell contractile forces are greater than cell-substratum adhesion forces, spheroidal aggregates form; when cell contractile forces are weaker than cell-substratum adhesion forces, cells remain essentially spread and form monolayered aggregates. We tested this hypothesis by systematically varying the morphology of hepatocellular aggregates formed on substrata coated with a series of different concentrations of Matrigel, and correlating aggregate morphology with the cell-substratum adhesion strength measured in a shear flow detachment assay. Aggregate morphology was binary - spheroidal aggregates formed at low Matrigel concentrations and monolayered aggregates formed at high Matrigel concentrations. Cell-substratum adhesion strength was similarly binary, with low adhesion strengths correlated with spheroidal aggregates and high adhesion strengths correlated with formation of monolayered aggregates. © 1997 John Wiley & Sons, Inc. Biotechnol Bioeng 53: 415-426, 1997.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...