ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Keywords
Years
  • 1
    Publication Date: 2020-06-12
    Description: The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-08-09
    Description: Transparent exopolymer particles (TEP) act as a major transport mechanism for organic matter (OM) to the sea surface microlayer (SML) via bubble scavenging, and into the atmosphere via bubble bursting. However; little is known about the effects of bubble scavenging on TEP enrichment in the SML. This study examined the effects of several bubbling conditions and algae species on the enrichment of TEP in the SML. TEP enrichment in the SML was enhanced by bubbling, with a larger impact from bubbling rate than bubble size and increasing enrichment over time. Depth profiles showed that any TEP aggregates formed in the underlying water (ULW) were rapidly (
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-12-10
    Description: Transparent exopolymer particles (TEPs) are a major source for both organic matter (OM) and carbon transfer in the ocean and into the atmosphere. Consequently, understanding the vertical distribution of TEPs and the processes which impact their movement is important in understanding the OM and carbon pools on a larger scale. Additionally, most studies looking at the vertical profile of TEPs have focused on large depth scales from 5 to 1000 m and have omitted the near-surface environment. Results from a study of TEP enrichment in the sea surface microlayer (SML) in different regions (tropical, temperate) has shown that, while there is a correlation between TEP concentration and primary production (PP) on larger or seasonal scales, such relationships break down on shorter timescales and spatial scales. Using a novel small-scale vertical sampler, the vertical distribution of TEPs within the uppermost 2 m was investigated. For two regions with a total of 20 depth profiles, a maximum variance of TEP concentration of 1.39×106 µg XG eq2 L−2 between depths and a minimum variance of 6×102 µg XG eq2 L−2 was found. This shows that the vertical distribution of TEPs was both heterogeneous and homogeneous at times. Results from the enrichment of TEPs and Chl a between different regions have shown TEP enrichment in the SML to be greater in oligotrophic waters, when both Chl a and TEP concentrations were low, suggesting the importance of abiotic sources for the enrichment of TEPs in the SML. However, considering multiple additional parameters that were sampled, it is clear that no single parameter could be used as a proxy for TEP heterogeneity. Other probable biochemical drivers of TEP transport are discussed.
    Print ISSN: 1812-0784
    Electronic ISSN: 1812-0792
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-09-18
    Description: Ice nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized and although there is some understanding of their sources, it is still unclear to what extend different sources contribute, nor if all sources are known. In this work, we examined properties of INPs at Cape Verde from different sources, the oceanic sea surface microlayer (SML) and underlying water (ULW), the atmosphere close to both sea and cloud level as well as cloud water. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with temperature. NINP in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular temperature spanned around 1 order of magnitude below −15 °C, and about 2 orders of magnitude at warmer temperatures (〉−12 °C). NINP in PM1 were generally lower than those in PM10 at CVAO. About 83 ± 22 %, 67 ± 18 % and 77 ± 14 % (median ± standard deviation) of INPs had a diameter 〉 1 µm at ice activation temperatures of −12, −15, and −18 °C, respectively. Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 std L−1 at −10 °C. However, for NINP in PM1 at CVAO, this is not the case. At these higher temperatures, often biological particles have been found to be ice active. Consequently, the difference in NINP between PM1 and PM10 at CVAO, suggests that biological ice active particles were present in the super-micron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during non-cloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV, but in cloud water samples, instead. This is direct evidence that these INPs which are likely biological are activated to cloud droplets during cloud events. In general, Cape Verde was often affected by dust from the Saharan desert during our measurement. For the observed air masses, atmospheric NINP in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. Therefore it can be said that, unless there would be a significant enrichment of NINP during the formation of SSA particles, NINP was mainly dominated by mineral dust at cold temperatures with few contributions from possible biological particles at warmer temperatures.
    Electronic ISSN: 1680-7375
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2020-02-06
    Description: Ice-nucleating particles (INPs) in the troposphere can form ice in clouds via heterogeneous ice nucleation. Yet, atmospheric number concentrations of INPs (NINP) are not well characterized, and, although there is some understanding of their sources, it is still unclear to what extend different sources contribute or if all sources are known. In this work, we examined properties of INPs at Cabo Verde (a.k.a. Cape Verde) from different environmental compartments: the oceanic sea surface microlayer (SML), underlying water (ULW), cloud water and the atmosphere close to both sea level and cloud level. Both enrichment and depletion of NINP in SML compared to ULW were observed. The enrichment factor (EF) varied from roughly 0.4 to 11, and there was no clear trend in EF with ice-nucleation temperature. NINP values in PM10 sampled at Cape Verde Atmospheric Observatory (CVAO) at any particular ice-nucleation temperature spanned around 1 order of magnitude below −15 ∘C, and about 2 orders of magnitude at warmer temperatures (〉-12 ∘C). Among the 17 PM10 samples at CVAO, three PM10 filters showed elevated NINP at warm temperatures, e.g., above 0.01 L−1 at −10 ∘C. After heating samples at 95 ∘C for 1 h, the elevated NINP at the warm temperatures disappeared, indicating that these highly ice active INPs were most likely biological particles. INP number concentrations in PM1 were generally lower than those in PM10 at CVAO. About 83±22 %, 67±18 % and 77±14 % (median±standard deviation) of INPs had a diameter 〉1 µm at ice-nucleation temperatures of −12, −15 and −18 ∘C, respectively. PM1 at CVAO did not show such elevated NINP at warm temperatures. Consequently, the difference in NINP between PM1 and PM10 at CVAO suggests that biological ice-active particles were present in the supermicron size range. NINP in PM10 at CVAO was found to be similar to that on Monte Verde (MV, at 744 m a.s.l.) during noncloud events. During cloud events, most INPs on MV were activated to cloud droplets. When highly ice active particles were present in PM10 filters at CVAO, they were not observed in PM10 filters on MV but in cloud water samples instead. This is direct evidence that these INPs, which are likely biological, are activated to cloud droplets during cloud events. For the observed air masses, atmospheric NINP values in air fit well to the concentrations observed in cloud water. When comparing concentrations of both sea salt and INPs in both seawater and PM10 filters, it can be concluded that sea spray aerosol (SSA) only contributed a minor fraction to the atmospheric NINP. This latter conclusion still holds when accounting for an enrichment of organic carbon in supermicron particles during sea spray generation as reported in literature.
    Print ISSN: 1680-7316
    Electronic ISSN: 1680-7324
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-12
    Description: Transparent exopolymer particles (TEP) are a major source for both organic matter (OM) and carbon transfer in the ocean and into the atmosphere. Consequently, understanding the vertical distribution of TEP and the processes which impact its movement are important in understanding the OM and carbon pools on a larger scale. Additionally, most studies looking at the vertical profile of TEP have focused on large depth scales from 5 to 1000s meters and have omitted the near surface environment. Results from a study of TEP enrichment in the sea surface microlayer (SML) in different regions (tropical, temperate) has shown that while there is a correlation between TEP abundance and primary production (PP) on larger or seasonal scales, such relationships break down on shorter time and spatial scales. Using a novel small-scale vertical sampler, the vertical distribution of TEP within the uppermost 2 meters was investigated. With a maximum variance of TEP abundance between depths (1.39 × 106 µg XG eq2 L-2) and a minimum variance of (6 × 102 µg XG eq2 L-2) the vertical distribution of TEP was found to be both heterogeneous and homogeneous at times. Results from the enrichment of TEP and Chl a between different regions has shown TEP enrichment to be greater in oligotrophic waters, when both Chl a and TEP abundance was low, suggesting the importance of abiotic sources for the enrichment of TEP in the SML. However, considering multiple additional parameters that were sampled, it is clear that no single parameter could be used as a proxy for TEP heterogeneity, other probable biochemical drivers of TEP transport are discussed.
    Print ISSN: 1812-0806
    Electronic ISSN: 1812-0822
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-05-08
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2020-11-13
    Description: Biofilm-like properties can form on sea surfaces, but an understanding of the underlying processes leading to the development of these biofilms is not available. We used approaches to study the development of biofilm-like properties at the sea surface, i.e. the number, abundance and diversity of bacterial communities and phytoplankton, the accumulation of gel-like particles and dissolved tracers. During the expedition POS537 we used newly developed and free drifting mesocosms and performed incubation experiments. With these approaches we aim to investigate the role of light and UV radiation as well as the microbes themselves, which lead to the formation of biofilms. With unique microbial interactions and photochemical reactions, sea surface biofilms could be biochemical reactors with significant implications for ocean and climate research, e.g. with respect to the marine carbon cycle, diversity of organisms and oceanatmosphere interactions.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2023-07-07
    Description: The project MarParCloud (Marine biological production, organic aerosol Particles and marine Clouds: a process chain) aims to improve our understanding of the genesis, modification and impact of marine organic matter (OM) from its biological production, to its export to marine aerosol particles and, finally, to its ability to act as ice-nucleating particles (INPs) and cloud condensation nuclei (CCN). A field campaign at the Cape Verde Atmospheric Observatory (CVAO) in the tropics in September–October 2017 formed the core of this project that was jointly performed with the project MARSU (MARine atmospheric Science Unravelled). A suite of chemical, physical, biological and meteorological techniques was applied, and comprehensive measurements of bulk water, the sea surface microlayer (SML), cloud water and ambient aerosol particles collected at a ground-based and a mountain station took place. Key variables comprised the chemical characterization of the atmospherically relevant OM components in the ocean and the atmosphere as well as measurements of INPs and CCN. Moreover, bacterial cell counts, mercury species and trace gases were analyzed. To interpret the results, the measurements were accompanied by various auxiliary parameters such as air mass back-trajectory analysis, vertical atmospheric profile analysis, cloud observations and pigment measurements in seawater. Additional modeling studies supported the experimental analysis. During the campaign, the CVAO exhibited marine air masses with low and partly moderate dust influences. The marine boundary layer was well mixed as indicated by an almost uniform particle number size distribution within the boundary layer. Lipid biomarkers were present in the aerosol particles in typical concentrations of marine background conditions. Accumulation- and coarse-mode particles served as CCN and were efficiently transferred to the cloud water. The ascent of ocean-derived compounds, such as sea salt and sugar-like compounds, to the cloud level, as derived from chemical analysis and atmospheric transfer modeling results, denotes an influence of marine emissions on cloud formation. Organic nitrogen compounds (free amino acids) were enriched by several orders of magnitude in submicron aerosol particles and in cloud water compared to seawater. However, INP measurements also indicated a significant contribution of other non-marine sources to the local INP concentration, as (biologically active) INPs were mainly present in supermicron aerosol particles that are not suggested to undergo strong enrichment during ocean–atmosphere transfer. In addition, the number of CCN at the supersaturation of 0.30 % was about 2.5 times higher during dust periods compared to marine periods. Lipids, sugar-like compounds, UV-absorbing (UV: ultraviolet) humic-like substances and low-molecular-weight neutral components were important organic compounds in the seawater, and highly surface-active lipids were enriched within the SML. The selective enrichment of specific organic compounds in the SML needs to be studied in further detail and implemented in an OM source function for emission modeling to better understand transfer patterns, the mechanisms of marine OM transformation in the atmosphere and the role of additional sources. In summary, when looking at particulate mass, we see oceanic compounds transferred to the atmospheric aerosol and to the cloud level, while from a perspective of particle number concentrations, sea spray aerosol (i.e., primary marine aerosol) contributions to both CCN and INPs are rather limited.
    Type: Article , PeerReviewed
    Format: text
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2023-11-06
    Description: The research cruise M187 with the RV METEOR sailed January 25 th to March 4 th 2023 from Walvis Bay to Walvis Bay (Namibia), with a focus on investigating the biogeochemical gradients that exist between the Benguela Upwelling zone and the South Atlantic Subtropical Gyre. In order to achieve this, the two specific foci of the research cruise were to (i) track upwelling filaments as they advect offshore and interact with the subtropical gyre, and (ii) perform a high-resolution transect from upwelling sites to the subtropical gyre. On the research cruise, two filaments were successfully mapped from cold water upwelling sites near or over the Namibian shelf through to warmer waters offshore. This was followed by a transect of twelve stations outwards into the subtropical gyre, reaching a maximum westward position of 5 °W. Sampling stations were conducted to a maximum depth of 1000 m and involved an array of deployments to investigate the biogeochemistry of the water column. Further nutrient addition bioassay experiments were conducted throughout the research cruise to assess the nutrients (co-)limiting to phytoplankton growth. Collectively our research will shed light on key mechanisms establishing the major oceanic biogeochemical gradients between upwelling and subtropical gyre regions, so that they can be included in models used to predict the impacts of climate change.
    Type: Report , NonPeerReviewed
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...