ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Call number: 11/M 03.0009
    In: Reviews in mineralogy & geochemistry
    Description / Table of Contents: This volume was produced in response to the need for a comprehensive introduction to the continually evolving state of the art of synchrotron radiation applications in low-temperature geochemistry and environmental science. It owes much to the hard work and imagination of the devoted cadre of sleep-deprived individuals who blazed a trail that many others are beginning to follow. Synchrotron radiation methods have opened new scientific vistas in the earth and environmental sciences, and progress in this direction will undoubtedly continue. The organization of this volume is as follows. Chapter 1 (Brown and Sturchio) gives a fairly comprehensive overview of synchrotron radiation applications in low temperature geochemistry and environmental science. The presentation is organized by synchrotron methods and scientific issues. It also has an extensive reference list that should prove valuable as a starting point for further research. Chapter 2 (Sham and Rivers) describes the ways that synchrotron radiation is generated, including a history of synchrotrons and a discussion of aspects of synchrotron radiation that are important to the experimentalist. The remaining chapters of the volume are organized into two groups. Chapters 3 through 6 describe specific synchrotron methods that are most useful for single-crystal surface and mineral-fluid interface studies. Chapters 7 through 9 describe methods that can be used more generally for investigating complex polyphase fine-grained or amorphous materials, including soils, rocks, and organic matter. Chapter 2 (Shearer) reviews the behavior of Be in the Solar System, with an emphasis on meteorites, the Moon and Mars, and the implications of this behavior for the evolution of the solar system. Chapter 3 (Ryan) is an overview of the terrestrial geochemistry of Be, and Chapter 7 (Vesely, Norton, Skrivan, Majer, Kr·m, Navr·til, and Kaste) discusses the contamination of the environment by this anthropogenic toxin. Chapter 3 (Fenter) presents the elementary theory of synchrotron X-ray reflectivity along with examples of recent applications, with emphasis on in situ studies of mineral-fluid interfaces. Chapter 4 (Bedzyk and Cheng) summarizes the theory of X-ray standing waves (XSW), the various methods for using XSW in surface and interfaces studies, and gives a brief review of recent applications in geochemistry and mineralogy. Chapter 5 (Waychunas) covers the theory and applications of grazing-incidence X-ray absorption and emission spectroscopy, with recent examples of studies at mineral surfaces. Chapter 6 (Hirschmugl) describes the theory and applications of synchrotron infrared microspectroscopy. Chapter 7 (Manceau, Marcus, and Tamura) gives background and examples of the combined application of synchrotron X-ray microfluorescence, microdiffraction, and microabsorption spectroscopy in characterizing the distribution and speciation of metals in soils and sediments. Chapter 8 (Sutton, Newville, Rivers, Lanzirotti, Eng, and Bertsch) demonstrates a wide variety of applications of synchrotron X-ray microspectroscopy and microtomography in characterizing earth and environmental materials and processes. Finally, Chapter 9 (Myneni) presents a review of the principles and applications of soft X-ray microspectroscopic studies of natural organic materials. All of these chapters review the state of the art of synchrotron radiation applications in low temperature geochemistry and environmental science, and offer speculations on future developments. The reader of this volume will acquire an appreciation of the theory and applications of synchrotron radiation in low temperature geochemistry and environmental science, as well as the significant advances that have been made in this area in the past two decades (especially since the advent of the third-generation synchrotron sources). We hope that this volume will inspire new users to "see the light" and pursue their research using the potent tool of synchrotron radiation.
    Type of Medium: Monograph available for loan
    Pages: XXII, 579 S.
    ISBN: 0-939950-61-8 , 978-0-939950-61-4
    ISSN: 1529-6466
    Series Statement: Reviews in mineralogy & geochemistry 49
    Classification:
    Geochemistry
    Language: English
    Note: Chapter 1. An Overview of Synchrotron Radiation Applications to Low Temperature Geochemistry and Environmental Science by Gordon E. Brown, Jr. and Neil C. Sturchio, p. 1 - 116 Chapter 2. A Brief Overview of Synchrotron Radiation by T. K. Sham and Mark L. Rivers, p. 117 - 148 Chapter 3. X-ray Reflectivity as a Probe of Mineral-Fluid Interfaces: A User Guide by Paul A. Fenter, p. 149 - 220 Chapter 4. X-ray Standing Wave Studies of Minerals and Mineral Surfaces: Principles and Applications by Michael J. Bedzyk and Likwan Cheng, p. 221 - 266 Chapter 5. Grazing-incidence X-ray Absorption and Emission Spectroscopy by Glenn A. Waychunas, p. 267 - 316 Chapter 6. Applications of Storage Ring Infrared Spectromicroscopy and Reflection-Absorption Spectroscopy to Geochemistry and Environmental Science by Carol J. Hirschmugl, p. 317 - 340 Chapter 7. Quantitative Speciation of Heavy Metals in Soils and Sediments by Synchrotron X-ray Techniques by Alain Manceau, Matthew A. Marcus, and Nobumichi Tamura, p. 341 - 428 Chapter 8. Microfluorescence and MicrotomographyAnalyses of Heterogeneous Earth and Environmental Materials by Stephen R. Sutton, Paul M. Bertsch, Matthew Newville, Mark Rivers, Antonio Lanzirotti and Peter Eng, p. 429 - 484 Chapter 9. Soft X-ray Spectroscopy and Spectromicroscopy Studies of Organic Molecules in the Environment by Satish C. B. Myneni, p. 485 - 579
    Location: Reading room
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: This volume was produced in response to the need for a comprehensive introduction to the continually evolving state of the art of synchrotron radiation applications in low-temperature geochemistry and environmental science. It owes much to the hard work and imagination of the devoted cadre of sleep-deprived individuals who blazed a trail that many others are beginning to follow. Synchrotron radiation methods have opened new scientific vistas in the earth and environmental sciences, and progress in this direction will undoubtedly continue. The organization of this volume is as follows. Chapter 1 (Brown and Sturchio) gives a fairly comprehensive overview of synchrotron radiation applications in low temperature geochemistry and environmental science. The presentation is organized by synchrotron methods and scientific issues. It also has an extensive reference list that should prove valuable as a starting point for further research. Chapter 2 (Sham and Rivers) describes the ways that synchrotron radiation is generated, including a history of synchrotrons and a discussion of aspects of synchrotron radiation that are important to the experimentalist. The remaining chapters of the volume are organized into two groups. Chapters 3 through 6 describe specific synchrotron methods that are most useful for single-crystal surface and mineral-fluid interface studies. Chapters 7 through 9 describe methods that can be used more generally for investigating complex polyphase fine-grained or amorphous materials, including soils, rocks, and organic matter. Chapter 3 (Fenter) presents the elementary theory of synchrotron X-ray reflectivity along with examples of recent applications, with emphasis on in situ studies of mineral-fluid interfaces. Chapter 4 (Bedzyk and Cheng) summarizes the theory of X-ray standing waves (XSW), the various methods for using XSW in surface and interfaces studies, and gives a brief review of recent applications in geochemistry and mineralogy. Chapter 5 (Waychunas) covers the theory and applications of grazing-incidence X-ray absorption and emission spectroscopy, with recent examples of studies at mineral surfaces. Chapter 6 (Hirschmugl) describes the theory and applications of synchrotron infrared microspectroscopy. Chapter 7 (Manceau, Marcus, and Tamura) gives background and examples of the combined application of synchrotron X-ray microfluorescence, microdiffraction, and microabsorption spectroscopy in characterizing the distribution and speciation of metals in soils and sediments. Chapter 8 (Sutton, Newville, Rivers, Lanzirotti, Eng, and Bertsch) demonstrates a wide variety of applications of synchrotron X-ray microspectroscopy and microtomography in characterizing earth and environmental materials and processes. Finally, Chapter 9 (Myneni) presents a review of the principles and applications of soft X-ray microspectroscopic studies of natural organic materials. All of these chapters review the state of the art of synchrotron radiation applications in low temperature geochemistry and environmental science, and offer speculations on future developments. The reader of this volume will acquire an appreciation of the theory and applications of synchrotron radiation in low temperature geochemistry and environmental science, as well as the significant advances that have been made in this area in the past two decades (especially since the advent of the third-generation synchrotron sources). We hope that this volume will inspire new users to "see the light" and pursue their research using the potent tool of synchrotron radiation.
    Pages: Online-Ressource (XXII, 579 Seiten)
    ISBN: 0939950618
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: Multielement Ge and Si(Li) detectors have been used in recent years to improve the increase count rate capability and to improve the solid-angle efficiency in fluorescence x-ray absorption spectroscopy (XAS). Such systems have typically been equipped with one or more single-channel analyzers (SCAs) for each detector element. Such SCA-based electronics are sufficient when only the counts in one or two well-resolved peaks are of interest. For the fluorescence (XRF) microprobe at beamline X-26A at the NSLS, SCA-based electronics were not a satisfactory solution for two reasons: (1) for XRF experiments, the entire fluorescence spectrum is required; (2) for micro-XAS studies of trace elements in complex systems, the fluorescence peak often sits on a significant background or partially overlaps another fluorescence peak, requiring software background subtraction or peak deconvolution. An electronics system which permits collection of the entire fluorescence spectrum from each detector element has been designed. The system is made cost-effective by the use of analog multiplexors, reducing the number of analog-to-digital converters (ADCs) and multichannel analyzers (MCAs) required. The system was manufactured by Canberra Industries and consists of: (1) a 13 element Ge detector (11 mm diameter detector elements), (2) 13 NIM spectroscopy amplifiers with programmable gains, (3) four analog multiplexors with maximum of eight inputs each, (4) four ADCs with programmable offsets and gains and 800 ns conversion time, and (5) two MCAs with Ethernet communications ports and two ADC inputs each.The amplifiers have shaping times which are adjustable from 0.5 to 12 μs. The analog multiplexors were modified to perform pileup rejection. The analog multiplexing does not significantly reduce the count rate capability of the system, even at the shortest amplifier shaping times. The average detector resolution is 170 eV at 12 μs shaping time and 200 eV at 4 μs shaping time. The maximum aggregate count rate is 400 kHz with 0.5 μs shaping time. The system is controlled by software based upon a package from Canberra and another commercial package (IDL), both running on a VAXstation 4000/90. The software automatically adjusts the gains of the amplifiers and offsets of the ADCs so that the spectra from each detector have identical calibrations and can be added channel for channel. The overhead to read a 1024 channel spectrum from each of the 13 elements and sum them is about 2 s. The software allows a range of options for data storage, from saving the complete spectrum for each of the 13 detectors elements ((approximately-greater-than)50 000 bytes/point) to saving only the net counts under a single fluorescence peak summed over all the detector elements (4 bytes/point). These data can be stored at each pixel in an elemental map or at each point in a monochromator scan. The system has been commissioned and is being used for XRF and micro-XAS studies. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: We describe a laser heated diamond anvil cell system at the GeoSoilEnviroCARS sector at the Advanced Photon Source. The system can be used for in situ x-ray measurements at simultaneously ultrahigh pressures (to 〉150 GPa) and ultrahigh temperatures (to 〉4000 K). Design goals of the laser heating system include generation of a large heating volume compared to the x-ray beam size, minimization of the sample temperature gradients both radially and axially in the diamond anvil cell, and maximization of heating stability. The system is based on double-sided laser heating technique and consists of two Nd:YLF lasers with one operating in TEM00 mode and the other in TEM01* mode, optics to heat the sample from both sides, and two spectroradiometric systems for temperature measurements on both sides. When combined with an x-ray microbeam (3–10 μm) technique, a temperature variation of less than 50 K can be achieved within an x-ray sampled region for longer than 10 min. The system has been used to obtain in situ structural data and high temperature equations of state on metals, oxides, and silicates to 3500 K and 160 GPa. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1089-7623
    Source: AIP Digital Archive
    Topics: Physics , Electrical Engineering, Measurement and Control Technology
    Notes: The synchrotron x-ray fluorescence (SXRF) microprobe has proven to be a valuable tool for trace element research. It permits analysis down to a few parts per million of many elements in a spot size of less than 10 μm. Existing SXRF microprobes are using energy dispersive detectors (EDS), either Si(Li) or intrinsic Ge diodes. Such detectors have the advantage of collecting the entire fluorescence spectrum at once. They can also be positioned to collect a relatively large solid angle. However, EDS detectors suffer from several significant problems: resolution at Fe Kα is about 150 eV, which is roughly 60 times the natural linewidth; the maximum count rate is less than 20 000 counts/s in the entire spectrum; there is significant low-energy background due to scattering and incomplete charge collection in the device. For geochemical analyses these limitations preclude trace element analyses in the presence of a large amount of a high atomic number element: for example, trace element studies of galena (PbS) and zircon (ZrSiO4), or measurements of Cr or Ti in minerals with more than a few percent Fe or Mn. The poor energy resolution prevents the measurement of small amounts of rare-earth elements in samples with significant concentrations of first-row transition elements. Wavelength dispersive spectrometers, based upon Bragg diffraction from a bent crystal, have several distinct advantages over EDS detectors. The resolution at Fe Kα is about 10 eV, or only 4 times the natural linewidth. This permits the analysis of rare-earth elements and also lowers the background which improves detection limits to the 0.1 ppm range.The WDS spectrometer only detects a single energy at once, so it is possible to measure trace elements in the presence of intense fluorescence of a major element. We have installed a commercial wavelength dispersive spectrometer (model WDX-3PC from Microspec Corp., Fremont, CA) on the X-26A microprobe beamline at the NSLS. The spectrometer can scan the range from 33° to 135° 2θ. It contains four analyzing crystals (TAP, PET, LiF200, LiF220) mounted on a motor-driven turret, which cover the energy range from 1 to 17 keV. The detector is equipped with tandem proportional counters: a thin-window flow counter (P-10 gas) followed by a Be-windowed sealed Xe counter. A remotely adjustable exit slit is located just before the flow counter. This slit can be used to trade off count rate for energy resolution. Measured resolution at Fe Kα is 11 eV. The peak/background ratio on Fe metal is 105, which is roughly 100 times better than with a Si(Li) detector. The measured collection efficiency varies from roughly 10−3 to 10−4, which is a factor of 3–10 lower than that for the Si(Li) detector as it is normally used at X-26A. The X-26A microprobe has been configured to allow simultaneous use of both the WDS and Si(Li) detector. The detectors complement each other nicely, with the Si(Li) providing an overview of the entire spectrum and the WDS available to study selected peaks with significantly better energy resolution and sensitivity. © 1995 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Environmental science & technology 28 (1994), S. 980-984 
    ISSN: 1520-5851
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Energy, Environment Protection, Nuclear Power Engineering
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Woodbury, NY : American Institute of Physics (AIP)
    Applied Physics Letters 78 (2001), S. 3208-3210 
    ISSN: 1077-3118
    Source: AIP Digital Archive
    Topics: Physics
    Notes: The melting behavior of indium at high pressure has been studied in an externally heated diamond anvil cell (DAC) using x-ray diffraction measurements. Melting at high pressure was identified by the appearance of diffuse scattering from the melt with the simultaneous disappearance of crystalline diffraction signals. The observed melting curve is in good agreement with previous determinations based on resistivity measurements in a piston cylinder apparatus. These results demonstrate the successful melting experiments in a DAC using the x-ray diffuse scattering as the melting criterion. © 2001 American Institute of Physics.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Analytical chemistry 60 (1988), S. 855-858 
    ISSN: 1520-6882
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    ISSN: 1432-0967
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Notes: Abstract The compositions of liquids coexisting with experimentally grown crystals of olivine, plagioclase, clinopyroxene, orthopyroxene, leucite, spinel, rhombohedral oxide, melilite and potassium feldspar are used to define, through mass action expressions of liquid/solid equilibrium, compositional derivatives of the Gibbs free energy of mixing of naturally occuring silicate liquids as a function of temperature, pressure and the fugacity of oxygen. The available experimental data describe these derivatives over a range of compositions which includes basic magmas. Therefore, for silicate liquids in this composition range, the topology of the Gibbs free energy of mixing can be approximated from experimental determinations of its derivatives. The majority of the existing thermodynamic data on the liquid phase is consistent with the application of regular solution theory to model the free energy of mixing. Strictly symmetric, temperature and pressure independent, regular solution interaction parameters are calibrated from this phase equilibrium data using regression techniques which have their basis in inverse theory. These techniques generate numerically stable interaction parameters which incorporate inter-variable correlation and account for experimental uncertainty. The regular solution model fits the available data on anhydrous silicate liquids to within the accuracy of the thermodynamic database +/−550 cals). Extensions to regular solution theory allow water solubility in more silica rich liquids to be modelled somewhat less accurately (+/−750 cals). The topology of the excess free energy of mixing surface is strongly asymmetric, possessing a single multicomponent saddle point which defines a spinodal locus. Given this prediction of a multicomponent spinode, a mathematical procedure based upon minimisation of the Gibbs free energy of mixing is developed for the calculation of the compositions of coexisting immiscible liquids. Predicted binodal compositions substantially agree with elemental liquid/liquid partitioning trends observed in lavas. Calculations suggest that an immiscible dome, in temperature-composition space, intersects the liquidus field of the magma type tholeiite. Immiscible phenomena are predicted at sub-liquidus temperatures for the bulk compositions of more basic or alkalic lavas, but are absent in more siliceous rock types for temperatures of the metastable liquid down to 900 K. The regular solution model is used in four petrological applications. The first concerns a prediction of the binary olivine-liquid phase diagram. The calculated geometry exhibits a minimum near Fa75, which, though not in accord with experimental results on the pseudobinary system, compares quite favorably with olivine-liquid phase equilibria interpreted from rhyolites, namely that the olivine phenocrysts of rhyolites are more iron rich than their coexisting liquids. The second petrological example concerns estimating the depth of the source regions of several basic lavas whose compositions cover a range from ugandite to basaltic andesite. The third application is a calculation of the saturation temperatures and compositions of plagioclase and olivine in four experimental basaltic liquids and a prediction of the liquidus temperatures and first phenocryst compositions of the Thingmuli lava series of Eastern Iceland. Lastly, enthalpies of fusion are computed for a variety of stoichiometric compounds of geologic interest. These demonstrate good agreement with calorimetrically measured quantities
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...