ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-06-13
    Print ISSN: 1468-2702
    Electronic ISSN: 1468-2710
    Topics: Geography , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2002-10-01
    Print ISSN: 1468-2702
    Electronic ISSN: 1468-2710
    Topics: Geography , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-04-22
    Print ISSN: 1468-2702
    Electronic ISSN: 1468-2710
    Topics: Geography , Economics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-08-31
    Description: Efforts in support of the Space Shuttle Main Engine (SSME) structural durability program have concentrated on obtaining detailed time-averaged and time-resolved (or phase-locked) measurements on a full-scale rotating turbine both with and without cold gas injection and on theoretical studies designed to improve the prediction capability for these turbine flows. The experimental efforts have concentrated on use of the Garrett TFE 731-2 hp turbine. However, it has been possible to apply the theoretical efforts to predicting heat-flux distributions obtained for two additional turbines - i.e., (1) the Garrett low aspect ratio turbine (LART) and (2) the Teledyne 702 turbine. The experimental technique is the short duration, shock-tunnel approach, in which fast-response, thin-film resistance thermometers are used to measure surface temperature histories at prescribed locations on the turbine component parts. Heat-flux values are then inferred from the temperature histories by using standard data reduction procedures. The turbine being used is the Garrett TFE 731-2 hp stage, and both the nozzle guide vanes and the rotor blades are heavily instrumented with thin-film heat-flux gauges. Depending on how the data from a particular heat-flux gauge are recorded, one can get either time-resolved (or phase-locked) or time-averaged results. Both types of data are illustrated.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA. Lewis Research Center Structural Integrity and Durability of Reusable Space Propulsion Systems; p 29-32
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-06-28
    Description: The present study numerically demonstrates how small spanwise variations in velocity upstream of a body can cause relatively large increases in the spanwise-averaged heat transfer to the leading edge. Vorticity introduced by spanwise variations, first decays as it drifts downstream, then amplifies in the stagnation region as a result of vortex stretching. This amplification can cause a periodic array of 3D structures, similar to horseshoe vortices, to form. The numerical results indicate that, for the given wavelength, there is an amplitude threshold below which a structure does not form. A one-dimensional analysis, to predict the decay of vorticity in the absence of the body, in conjunction with the full numerical results indicated that the threshold is more accurately stated as minimum level of vorticity required in the leading edge region for a structure to form. It is possible, using the one-dimensional analysis, to compute an optimum wavelength in terms of the maximum vorticity reaching the leading edge region for given amplitude. A discussion is presented which relates experimentally observed trends to the trends of the present phenomena.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 91-1739
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-06-28
    Description: A study of the effect of spanwise variation on leading edge heat transfer is presented. Experimental and numerical results are given for a circular leading edge and for a 3:1 elliptical leading edge. It is demonstrated that increases in leading edge heat transfer due to spanwise variations in freestream momentum are comparable to those due to freestream turbulence.
    Keywords: AERODYNAMICS
    Type: AIAA PAPER 92-3070
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The Low Reynolds number version of the Stress-omega model and the two equation k-omega model of Wilcox were used for the calculation of turbulent heat transfer in a 180 degree turn simulating an internal coolant passage. The Stress-omega model was chosen for its robustness. The turbulent thermal fluxes were calculated by modifying and using the Generalized Gradient Diffusion Hypothesis. The results showed that using this Reynolds Stress model allowed better prediction of heat transfer compared to the k-omega two equation model. This improvement however required a finer grid and commensurately more CPU time.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: NASA/CR-2002-211515 , E-13308 , NAS 1.26:211515 , GT-2002-30211 , Turbo Expo 2002; Jun 03, 2002 - Jun 06, 2002; Amsterdam; Netherlands
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: An experiment is conducted on the effectiveness of a vortex generator in preventing liftoff of a jet in crossflow, with possible relevance to film-cooling applications. The jet issues into the boundary layer at an angle of 20 degreees to the freestream. The effect of a triangular ramp-shaped vortex generator is studied while varying its geometry and location. Detailed flowfield properties are obtained for a case in which the height of the vortex generator and the diameter of the orifice are comparable with the approach boundary-layer thickness. The vortex generator produces a streamwise vortex pair with a vorticity magnitude 3 times larger (and of opposite sense) than that found in the jet in crossflow alone. Such a vortex generator appears to be most effective in keeping the jet attached to the wall. The effect of parametric variation is studied mostly from surveys 10 diameters downstream from the orifice. Results over a range of jet-to-freestream momentum flux ratio (1 〈 J 〈 11) show that the vortex generator has a significant effect even at the highest J covered in the experiment. When the vortex generator height is halved, there is a liftoff of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensity. Varying the location of the vortex generator, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the vortex generator with the increasing radius of curvature progressively diminishes its effect. However, allowing for a small radius of curvature may be quite tolerable in practice.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: AIAA Paper-2010-0088 , E-17969 , Journal of Propulsion and Power; 26; 5; 947-954|48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: An experiment is conducted on the effectiveness of a vortex generator (VG) in preventing lift-off of a jet-in-cross-flow (JICF), with film-cooling application in mind. The jet issues into the boundary layer at an angle of 20 to the free-stream. The effect of a triangular ramp-shaped VG is studied while varying its geometry and location. Detailed flow-field properties are documented for a specific case in which the height of the VG and the diameter of the orifice are comparable to the approach boundary layer thickness. This combination of VG and JICF produce a streamwise vortex pair with vorticity magnitude three times larger (and of opposite sense) than that found in the JICF alone. Such a VG appears to be most effective in keeping the jet attached to the wall. While most of the data are taken at a jet-to-freestream momentum flux ratio (J) of 2, limited surveys are done for varying J. The VG is found to have a significant effect even at the highest J (=11) covered in the experiment. Effect of parametric variation is studied mostly from surveys ten diameters downstream from the orifice. When the VG height is halved there is a lift-off of the jet. On the other hand, when the height is doubled, the jet core is dissipated due to larger turbulence intensities. Varying the location of the VG, over a distance of three diameters from the orifice, is found to have little impact. Rounding off the edges of the VG with increasing radius of curvature progressively diminishes the effect. However, a small radius of curvature may be quite tolerable in practice.
    Keywords: Aerodynamics
    Type: AIAA Paper-2010-88 , E-17968 , 48th AIAA Aerospace Sciences Meeting; Jan 04, 2010 - Jan 07, 2010; Orlando, FL; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: A computational study has been performed to predict the distribution of convective heat transfer coefficient on a simulated blade tip with cooling holes. The purpose of the examination was to assess the ability of a three-dimensional Reynolds-averaged Navier-Stokes solver to predict the rate of tip heat transfer and the distribution of cooling effectiveness. To this end, the simulation of tip clearance flow with blowing of Kim and Metzger was used. The agreement of the computed effectiveness with the data was quite good. The agreement with the heat transfer coefficient was not as good but improved away from the cooling holes. Numerical flow visualization showed that the uniformity of wetting of the surface by the film cooling jet is helped by the reverse flow due to edge separation of the main flow.
    Keywords: Fluid Mechanics and Heat Transfer
    Type: NASA/CR-1999-209165 , NAS 1.26:209165 , E-11756 , Air Breathing Engines; Sep 05, 1999 - Sep 10, 1999; Florence; Italy
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...