ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-08-26
    Description: Primary energy consumption has increased by 49% and CO 2 emissions by 43% during the last two decades, and the predictions indicate that the growing trend will continue as a consequence of the notable growth in world population. Nations with developing economies (South America, Middle East, Africa and Southeast Asia) have an average annual energy consumption rate of 3.2%, whereas the rate is 1.1% for most of the developed economies (North America, Japan, Australia and Western Europe). In this paper, overall energy consumption in the UK by sector is evaluated from 1973 oil crisis to the present. The scope is split into four sectors as transport, domestic, industrial and services sector and the results for each are presented in a comparable way. Percentage of total primary energy consumption and final energy consumption by fuel type are presented. Several factors affecting the overall energy consumption are also investigated.
    Keywords: Built environment and low-carbon society
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2013-02-09
    Description: Aerogels are a special type of solid material with nanometre-scale pores 〈1/3000th the width of a human hair. Porosity is in excess of 90%, in some cases as high as 99.9%, and densities can be as low as 3 kg/m 3 . Aerogels are essentially ‘puffed-up sand’ and are often termed ‘frozen smoke’. Their thermal conductivity (0.014 W/m K at room temperature) is the lowest of any solids, and they also have good transparency. The acoustic properties of aerogels make them effective insulators against noise, and aerogels have the lowest refractive index, and dielectric constant of all solid materials. The unusual properties of aerogels open the way to a new range of opportunities for their application in buildings. This paper provides information on their unique features and reviews the potential applications for aerogels in buildings as well as latest developments in the field.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2011-11-24
    Description: A hybrid jet-pump CO 2 compression system that may enhance system COP and reduce the environmental impact of transport refrigeration is analysed. At an evaporator temperature of –15°C, an ambient temperature of 35°C and a generator temperature of 120°C, COP increases from 1.0 to 2.27 as subcooling increases from 0 to 20 K. Compressor work is reduced by 24% at 20 K subcooling. The optimum degree of subcooling was ~10 K for the operating conditions examined. COP is improved while the size of heat exchangers required to operate the jet pump are minimised with respect to the overall weight of the system.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-11-24
    Description: In this paper, a thorough review of the available literature on photovoltaic/thermal (PV/T) systems is presented. The review is performed in a thematic way in order to allow an easier comparison, discussion and evaluation of the findings obtained by researchers, especially on parameters affecting the electrical and thermal performance of PV/T systems. The review covers a comprehensive historic overview of PV/T technology, detailed description of conventional flat-plate and concentrating PV/T systems, analysis of PV/T systems using water or air as the working fluid, analytical and numerical models, simulation and experimental studies, thermodynamic assessment of PV and PV/T systems and qualitative evaluation of thermal and electrical outputs. Furthermore, parameters affecting the performance of PV/T systems such as glazed versus unglazed PV/T collectors, optimum mass flow rate, packing factor, configuration design types and absorber plate parameters including tube spacing, tube diameter and fin thickness are extensively analyzed. Based on the thorough review, it can be easily said that the PV/T systems are very promising devices and PV/T technology is expected to become strongly competitive with the conventional power generation in the near future.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-11-24
    Description: This paper aimed to numerically investigate the performance comparison between counterflow and crossflow heat exchangers for indirect evaporative air cooler. Simulation results indicate that cooling performance difference between the two configurations considerably depends on the configuration structure of heat exchangers, the inlet air status and the mass flow rates of primary and secondary. Among types of the cross-sectional shape considered in this paper, the counter configuration with rectangle channels which has a length-to-width ratio of 16:1 can provide the best cooling performance. The wet bulb effectiveness of counterflow configuration is about 7% greater than that of crossflow configuration with increasing inlet air temperature on average. The higher the inlet air temperature, the bigger the EER, cooling capacity and supply air temperature difference between the two configurations. With increasing relative humidity, the two configurations keep an average wet bulb effectiveness difference of 7.1%. The wet bulb effectiveness difference between the two configurations narrows down from 8.3 to 5.3% with increasing air velocity.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2011-11-24
    Description: The advantages of numerical modelling compared with experimental studies (e.g. reduced cost, easy control of the variables, high yield etc.) are well known. Theoretical studies where experimental validation is also presented provide an important added value to numerical investigations. In the present paper, experimental and computational fluid dynamics (CFD) results for a 5-kW-rated capacity steam ejector, with a variable primary nozzle geometry, are presented and compared. The variable geometry was achieved by applying a movable spindle at the primary nozzle inlet. Relatively low operating temperatures and pressures were considered, so that the cooling system could be operated with thermal energy supplied by solar collectors (solar air-conditioning). The CFD model was based on the axi-symmetric representation of the experimental ejector, using water as a working fluid. The experimental entrainment ratio varied in the range of 0.1–0.5, depending on operating conditions and spindle tip position. It was found that the primary flow rate can be successfully adjusted by the spindle. CFD and experimental primary flow rates agreed well, with an average relative error of 8%. CFD predicted the secondary flow rate and entrainment ratio with good accuracy only in 70% of the cases.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2014-02-20
    Description: Water is one of the earth's most abundant resources, covering about three-quarters of the planet's surface. Yet, there is an acute shortage of potable water in many countries, especially in Africa and the Middle East region. The reason for this apparent contradiction is, of course, that ~97.5% of the earth's water is salt water in the oceans and only 2.5% is fresh water in ground water, lakes and rivers and this supplies most human and animal needs. Tackling the water scarcity problem must involve better and more economic ways of desalinating seawater. This article presents a comprehensive review of water desalination systems, whether operated by conventional energy or renewable energy, to convert saline water into fresh water. These systems comprise the thermal phase change and membrane processes, in addition to some alternative processes. Thermal processes include the multistage flash, multiple effects boiling and vapour compression, cogeneration and solar distillation, while the membrane processes include reverse osmosis, electrodialysis and membrane distillation. It also covers the integration into desalination systems of potential renewable energy resources, including solar energy, wind and geothermal energy. Such systems are increasingly attractive in the Middle East and Africa, areas suffering from shortages of fresh water but where solar energy is plentiful and where operational and maintenance costs are low. The advantages and disadvantages, including the economic and environmental aspects, of these desalination systems are presented.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-05-09
    Description: This paper presents a feasibility study of a low-energy consumption ground source cooling system based on a periodic two-phase thermosyphon (PTPT) device in which a condensate is periodically transferred back to the evaporator. Operation of the PTPT is passive with the ground condenser positioned 1–11 m below the evaporator. The ground condenser may be at the condensing temperatures of 12–20°C depending on the ground depth. A semi-analytical approach is used to simulate the transient behaviour of the PTPT device. The simulation aims to study the effect of several parameters on the cooling rate of the device, including the length of condensing coil, the ground depth, the temperatures of the soil and the indoor air. The preliminary simulation results indicate that the PTPT device may be promising for ground source cooling applications.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2013-05-09
    Description: This paper presents a comprehensive and state-of-the-art review on thermochemical energy storage (ES) technologies using thermochemical materials (TCMs) for building applications. Thermochemical storage devices (materials, open and closed sorption as well as chemical heat pump) enhance the energy efficiency of systems and sustainability of buildings by reducing the mismatch between supply and demand. Thermal ES (TES) systems using TCMs are particularly attractive and provide a high ES density at a constant temperature. Technical and economical questions will need to be answered for all possibilities, which warrant more development and large-scale demonstration of TES in future.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-08-09
    Description: This paper presents the preliminary experimental results of a liquid desiccant cooling system driven by the flue gas waste heat of a biomass boiler. The desiccant cooling system is mainly composed of a regenerator, a dehumidifier and an evaporative cooler. The flue gas waste heat is applied to the regenerator to regenerate the desiccant solution. The environmentally friendly liquid desiccant potassium formate (HCOOK) solution is used in the dehumidifier for air dehumidification due to its less corrosion, lower cost, lower density and lower viscosity. A cross-flow heat and mass exchanger for indirect evaporative cooling is adopted in the evaporative cooler to ensure that product air meets the indoor air quality and thermal comfort standard. The desiccant cooling system operated in Autumn days in Nottingham was found to be able to decrease the air temperature by 4°C and reach a cooling capacity of up to 2381 W. Moreover, the dehumidifier is able to reduce the relative humidity of the humid air by 13%. The biomass boiler's flue gas waste heat extracted and supplied to the regenerator was found to be 554 W, which is insufficient to regenerate the dilute liquid desiccant solution under current experimental conditions. To obtain sufficient heat to regenerate the liquid desiccant, the existing first-of-its-kind concentric helical coil heat exchanger extracting the waste heat of the boiler needs to be redesigned, and, in particular, the concentric helical coils of the heat exchanger need to be placed inside the chimney to enhance the waste heat extraction.
    Print ISSN: 1748-1317
    Electronic ISSN: 1748-1325
    Topics: Energy, Environment Protection, Nuclear Power Engineering , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...