ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2004-11-16
    Description: Thrombin initiates fibrin formation and platelet activation, and activates protein C, generating activated protein C (APC) that inhibits blood coagulation by a negative feedback loop. Thrombin has also proinflammatory effects through activation of cellular protease activated receptor-1 (PAR1). Endothelial cell protein C receptor (EPCR) can bind both protein C and APC and activation of EPCR-bound protein C is enhanced. Results from animal models and clinical trials indicate that APC has potent protective effects in systemic inflammation that are independent from its well established anticoagulant function and recombinant APC was recently approved to treat patients with severe sepsis. The molecular basis for APC’s anti-inflammatory effects is incompletely understood. We have identified PAR1 and EPCR as part of a novel APC signaling pathway in quiescent endothelial cells, raising the question how the same receptor PAR1 can mediate both pro- and anti-inflammatory effects. In an overexpression system in PAR-deficient fibroblasts, wildtype PAR2 but not a PAR2 variant with an Arg36 to Ala substitution at the P1 position was activated by APC, indicating that APC can activate PAR2 in addition to PAR1 through a canonical cleavage mechanism. Therefore, we tested whether endothelial cell PAR2 can be activated by APC under conditions where endogenous PAR2 expression is upregulated. Even when PAR2 expression was highly upregulated in inflammatory cytokine-stimulated human umbilical endothelial cells (HUVECs), signaling by APC was strictly dependent on PAR1 cleavage and signaling. Consistent with these results in HUVECs, intravenous injection of APC in wildtype, PAR1−/−, and PAR2−/− mice demonstrated that PAR1 is the major murine receptor that mediates induction of the transcript for monocyte chemoattractant protein-1 in the lung in response to APC. This indicates that indeed the same receptor PAR1 mediates signaling by APC and thrombin both in vitro and in vivo. To test the possibility that APC diminishes proinflammatory thrombin-PAR1 signaling by downregulating cellular levels of functional PAR1, we tested whether preincubation with APC can desensitize Erk1/2 phosphorylation by thrombin. Phospho-Erk1/2 was induced by APC dependent upon PAR1 cleavage, but APC-pretreated cells still responded to PAR1-dependent thrombin signaling, suggesting that only a fraction of the cellular PAR1 is subject to cleavage by APC. These results indicate that APC does not block thrombin signaling by desensitation at the receptor level. Large-scale gene expression profiling demonstrated that APC and thrombin had specific effects on gene expression in tumor necrosis factor α (TNFα )-perturbed endothelial cells that were not detected in quiescent cells. Transcripts for several proapoptotic genes including p53 and thrombospondin-1 were downregulated by APC but not by thrombin or PAR1 agonist peptides in TNFα-stimulated HUVECs. Western blotting confirmed that in TNFα-perturbed HUVECs pretreatment with APC significantly reduced the increase in cellular p53 protein levels in response to the cytotoxic doxorubicin. This APC effect was dependent on EPCR binding and PAR1 cleavage. Thrombospondin-1 protein levels were similarly downregulated by APC but upregulated by thrombin. Both down- and upregulation by APC and thrombin, respectively, were PAR1 dependent. These findings demonstrate that the same receptor on the same cell type can mediate opposite biological effects and they suggest that EPCR cosignaling may modify PAR1-dependent APC signaling in endothelial cells.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2008-03-01
    Description: Activated protein C (APC) signals in endothelial cells ex vivo through protease activated receptor-1 (PAR1). However, it is controversial whether PAR1 can mediate APC's protective effects in sepsis because the inflammatory response results in thrombin generation and thrombin proteolytically activates PAR1 much more efficiently than APC. Here we show that APC can induce powerful barrier protective responses in an endothelial cell monolayer in the presence of thrombin. Using cell surface immunoassays with conformation sensitive monoclonal anti-PAR1 antibodies we analyzed cleavage of endogenous PAR1 on the endothelial cell surface by APC in the absence and presence of thrombin. Incubation with APC caused efficient PAR1 cleavage and upon coincubation with thrombin APC supported additional PAR1 cleavage. Thrombin-cleaved PAR1 rapidly disappeared from the cell surface whereas, unexpectedly, the APC-cleaved PAR1 remained and could be detected on the cell surface, even when thrombin at concentrations of up to 1 nM was also present. Our findings demonstrate for the first time directly that APC can generate a distinct PAR1 population on endothelial cells in the presence of thrombin. The data suggest that different trafficking of activated PAR1 might explain how PAR1 signaling by APC can be relevant when thrombin is present.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2009-06-04
    Description: Activated protein C (APC) reduces mortality in severe sepsis patients. APC exerts anticoagulant activities via inactivation of factors Va and VIIIa and cytoprotective activities via endothelial protein C receptor and protease-activated receptor-1. APC mutants with selectively altered and opposite activity profiles, that is, greatly reduced anticoagulant activity or greatly reduced cytoprotective activities, are compared here. Glu149Ala-APC exhibited enhanced in vitro anticoagulant and in vivo antithrombotic activity, but greatly diminished in vitro cytoprotective effects and in vivo reduction of endotoxin-induced murine mortality. Thus, residue Glu149 and the C-terminal region of APC's light chain are identified as functionally important for expression of multiple APC activities. In contrast to Glu149Ala-APC, 5A-APC (Lys191-193Ala + Arg229/230Ala) with protease domain mutations lacked in vivo antithrombotic activity, although it was potent in reducing endotoxin-induced mortality, as previously shown. These data imply that APC molecular species with potent antithrombotic activity, but without robust cytoprotective activity, are not sufficient to reduce mortality in endotoxemia, emphasizing the need for APC's cytoprotective actions, but not anticoagulant actions, to reduce endotoxin-induced mortality. Protein engineering can provide APC mutants that permit definitive mechanism of action studies for APC's multiple activities, and may also provide safer and more effective second-generation APC mutants with reduced bleeding risk.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2001-05-15
    Description: Cell signaling by coagulation factor Xa (Xa) contributes to pro-inflammatory responses in vivo. This study characterizes the signaling mechanism of Xa in a HeLa cell line that expresses protease-activated receptor 1 (PAR-1) but not PAR-2, -3, or -4. Xa induced NF-κB in HeLa cells efficiently but with delayed kinetics compared to thrombin. This delay caused no difference in gene expression patterns, as determined by high-density microarray analysis. Both proteases prominently induced the angiogenesis-promoting geneCyr61 and connective tissue growth factor. Inhibition of PAR-1 cleavage abolished MAP kinase phosphorylation and gene induction by Xa, demonstrating that Xa signals through PAR-1 and not through a novel member of the PAR family. Activation of cell surface prothrombin with the snake venom enzyme Ecarin also produced PAR-1–dependent signaling. However, though the response to Ecarin was completely blocked by the thrombin inhibitor hirudin, the response to Xa was not. This suggests that the Xa response is not mediated by locally generated thrombin. The concentration dependence of Xa for PAR-1 activation is consistent with previously characterized Xa-mediated PAR-2 signaling, suggesting that local concentration of Xa on the cell surface, rather than sequence-specific recognition of the PAR scissile bond, determines receptor cleavage. This study demonstrates that PAR-1 cleavage by Xa can elicit the same cellular response as thrombin, but mechanistic differences in receptor recognition may be crucial for specific roles for Xa in signaling during spatial or temporal separation from thrombin generation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2011-06-09
    Description: Thrombin and activated protein C (APC) signaling can mediate opposite biologic responses in endothelial cells. Given that thrombin induces procoagulant tissue factor (TF), we examined how TF activity is affected by APC. Exogenous or endogenously generated APC led to increased TF-dependent factor Xa activity. Induction required APC's proteolytic activity and binding to endothelial cell protein C receptor but not protease activated receptors. APC did not affect total TF antigen expression or the availability of anionic phospholipids on the apical cell membrane. Western blotting and cell surface immunoassays demonstrated that APC sheds the Kunitz 1 domain from tissue factor pathway inhibitor (TFPI). A TFPI Lys86Ala mutation between the Kunitz 1 and 2 domains eliminated both cleavage and the enhanced TF activity in response to APC in overexpression studies, indicating that APC up-regulates TF activity by endothelial cell protein C receptor-dependent shedding of the Kunitz 1 domain from membrane-associated TFPI. Our results demonstrate an unexpected procoagulant role of the protein C pathway that may have important implications for the regulation of TF- and TFPI-dependent biologic responses and for fine tuning of the hemostatic balance in the vascular system.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1998-02-15
    Description: Our group recently cloned the cDNA-encoding bomapin, a member of the serine protease inhibitor (serpin) superfamily, from a human bone marrow cDNA library (J Biol Chem 270:2675, 1995). To understand its expression within the hematopoietic compartment, RNA extracted from bone marrow or peripheral blood from normal donors and patients with leukemia was reverse transcribed and analyzed by polymerase chain reaction (PCR). Bomapin PCR products were readily detected in normal bone marrow, which was designated as a medium mRNA level. In peripheral blood, bomapin expression was low or undetectable in normal donors (n = 6) and patients with chronic lymphocytic leukemia (n = 6). Blood from patients with chronic myeloid leukemia (n = 6), chronic myelomonocytic leukemia (n = 6), acute myeloid leukemia (n = 5), and acute lymphocytic leukemia (n = 5) exhibited low to medium levels of bomapin expression. Furthermore, a high level of bomapin expression was detected in one individual with acute monocytic leukemia. These data suggest that bomapin expression may be elevated in hematopoietic cells of monocytic lineage. Therefore, we analyzed the expression of bomapin within cell lines that exhibited characteristics of the monocytic lineage. Bomapin PCR products were detected in the monocytic THP-1 and AML-193 cell lines but not in CRL 7607, CRL 7541, KG-1, or K562 cells. Induction of bomapin transcripts was not detected in the latter series of cell lines following a 24-hour treatment with phorbol myristate acetate (PMA, 10−8mol/L) or tumor necrosis factor-α (TNF-α, 30 U/mL), whereas treatment of THP-1 or AML-193 cells with these agents reduced the intensity of the bomapin PCR products. Northern blotting confirmed these results and showed that the expression of bomapin in THP-1 cells was downregulated over a 4-day period by PMA and, to a lesser extent, TNF-α. Immunoblotting was used to show the presence of a 40-kD protein in THP-1 cytosol preparations. Bomapin antigen levels were correspondingly reduced after treatment with PMA. Because PMA and TNF-α induce monocytic differentiation in THP-1 and AML-193 cells, these data increase the possibility that bomapin may play a role in the regulation of protease activities specifically in early stages of cellular differentiation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2005-11-16
    Description: Protein C (PC) is activated by thrombomodulin-bound thrombin on the endothelial cell surface and activated protein C (APC) inhibits blood coagulation in a negative feedback loop. Endothelial PC receptor (EPCR) can bind PC/APC and activation of EPCR-bound PC is enhanced. Exogenous APC has barrier protective effects on endothelial cells that depend on EPCR binding and protease activated receptor-1 (PAR1) cleavage and that may contribute to the anti-inflammatory effects of APC. Plasma APC concentrations in vivo are low compared to the substrate PC and in order to induce protective signaling exogenous APC has to compete with PC for EPCR binding. In this study we investigated whether the endogenous PC activation pathway may be linked to efficient protective responses analyzing endothelial barrier permeability in a dual chamber system. When endothelial EA.hy926 cells were incubated for 3 h in the presence of 80 nM purified PC and different concentrations of thrombin a dose-dependent linear increase of APC activity in the cell medium was observed over time. APC generation was detectable upon incubation with 20 pM thrombin or higher and a significant barrier protective response to 20 pM thrombin was found only in the presence of PC. 40 pM thrombin enhanced barrier integrity in the presence and absence of PC, consistent with our previous results. To exclude direct thrombin effects on endothelial permeability and to compare protective effects of exogenous and endogenously generated APC, we used the anticoagulant double mutant thrombin W215A/E217A (WE). WE was about 10 times less active than wildtype thrombin for PC activation in our system. However, PAR1-dependent induction of MAP kinase phosphorylation required more than 1000-fold higher concentrations of the thrombin mutant. Thus, 1–10 nM WE leads to APC generation without directly inducing PAR1-dependent signaling. When cells were incubated with various concentrations of exogenous APC or WE+80 nM PC, barrier protective effects of 5 nM exogenous APC and 2 nM WE+80 nM PC (1.3 nM APC generated after 3 h) were similar. Because APC is generated at a constant rate during the incubation period, the average concentration of generated APC in the cell medium was only about 0.65 nM, suggesting that signaling by endogenously generated APC was significantly more efficient. To conclusively demonstrate that protective effects in response to WE are mediated by APC generation, we used recombinant zymogen wildtype PC and a PC variant with a substitution of the active site serine with alanine (PC S360A). Cells were incubated with control or 80 nM wildtype PC and PC S360A, in the presence or absence of WE (4 nM) and exogenous APC (3.3 nM). WE induced protective signaling only in the presence of wildtype PC but not PC S360A. Barrier protective effects of exogenous APC were blocked by both wildtype PC and PC S360A, consistent with their expected role as competitive inhibitors for APC binding to EPCR. These data demonstrate that efficient barrier enhancement by APC is indeed mechanistically coupled to the PC activation pathway. Signaling by endogenously generated APC may play an important role in the regulation of inflammation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2005-04-15
    Description: Endothelial cells normally form a dynamically regulated barrier at the blood-tissue interface, and breakdown of this barrier is a key pathogenic factor in inflammatory disorders such as sepsis. Pro-inflammatory signaling by the blood coagulation protease thrombin through protease activated receptor-1 (PAR1) can disrupt endothelial barrier integrity, whereas the bioactive lipid sphingosine 1-phosphate (S1P) recently has been demonstrated to have potent barrier protective effects. Activated protein C (APC) inhibits thrombin generation and has potent anti-inflammatory effects. Here, we show that APC enhanced endothelial barrier integrity in a dual-chamber system dependent on binding to endothelial protein C receptor, activation of PAR1, and activity of cellular sphingosine kinase. Small interfering RNA that targets sphingosine kinase-1 or S1P receptor-1 blocked this protective signaling by APC. Incubation of cells with PAR1 agonist peptide or low concentrations of thrombin (∼ 40 pM) had a similar barrier-enhancing effect. These results demonstrate that PAR1 activation on endothelial cells can have opposite biologic effects, reveal a role for cross-communication between the prototypical barrier-protective S1P and barrier-disruptive PAR1 pathway, and suggest that S1P receptor-1 mediates protective effects of APC in systemic inflammation.
    Print ISSN: 0006-4971
    Electronic ISSN: 1528-0020
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2002-06-07
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...