ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2008-11-13
    Print ISSN: 1438-3896
    Electronic ISSN: 1438-390X
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2004-05-14
    Print ISSN: 0029-8549
    Electronic ISSN: 1432-1939
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2007-08-28
    Print ISSN: 0096-3941
    Electronic ISSN: 2324-9250
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2006-09-01
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-02-03
    Electronic ISSN: 1932-6203
    Topics: Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
  • 7
    Publication Date: 2022-05-25
    Description: Author Posting. © The Author(s), 2008. This is the author's version of the work. It is posted here by permission of Springer for personal use, not for redistribution. The definitive version was published in Population Ecology 51 (2009): 17-32, doi:10.1007/s10144-008-0118-0.
    Description: Research of complex systems and problems, entities with many dependencies, is often reductionist. The reductionist approach splits systems or problems into different components, and then addresses these components one by one. This approach has been used in the study of recruitment and population dynamics of marine benthic (bottom dwelling) species. Another approach examines benthic population dynamics by looking at a small set of processes. This approach is statistical or model oriented. Simplified approaches identify “macrcoecological” patterns or attempt to identify and model the essential, “first order” elements of the system. The complexity of the recruitment and population dynamics problems stems from the number of processes that can potentially influence benthic populations, including (1) larval pool dynamics, (2) larval transport, (3) settlement, and (4) post-settlement biotic and abiotic processes, as well as larval production. Moreover, these processes are non-linear, some interact, and they may operate at disparate scales. This contribution discusses reductionist and simplified approaches to study benthic recruitment and population dynamics of bottom dwelling marine invertebrates. We first address complexity in two processes known to influence recruitment, larval transport, and post settlement survival to reproduction, and discuss the difficulty in understanding recruitment by looking at relevant processes individually and in isolation. We then address the simplified approach, which reduces the number of processes and makes the problem manageable. We discuss how simplifications and “broad-brush first order approaches” may muddle our understanding of recruitment. Lack of empirical determination of the fundamental processes often results in mistaken inferences, and processes and parameters used in some models can bias our view of processes influencing recruitment. We conclude with a discussion on how to reconcile complex and simplified approaches. Although it appears impossible to achieve a full mechanistic understanding of recruitment by studying all components of the problem in isolation, we suggest that knowledge of these components is essential for simplifying and understanding the system beyond probabilistic description and modeling.
    Description: We wish to thank WHOI’s Ocean Life Institute for support
    Keywords: Recruitment ; Benthic populations ; Population dynamics ; Larval transport ; Larval dispersal ; Settlement ; Complexity ; Models
    Repository Name: Woods Hole Open Access Server
    Type: Preprint
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    Copernicus Publications on behalf of the European Geosciences Union
    Publication Date: 2022-05-25
    Description: © The Author(s), 2018. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Marine Ecology Progress Series 595 (2018): 105-122, doi:10.3354/meps12561.
    Description: Vertical and cross-shore distributions and abundances of shallow-water barnacle larvae were characterized in La Jolla, southern California (USA), during a 2 yr period. Five stations located within 1 km of shore and ranging from 4-12 m water depths were sampled intensively in 2 m depth intervals during 27 cruises throughout spring-summer (April-July) and fall-winter (October-December) of 2014 and 2015. Larval abundances significantly decreased from 2014 to 2015, which could be related to the arrival of a warm-water anomaly (the so-called ‘Blob’) in 2014 and El Niño conditions in 2015. Despite the presence of these large-scale regional disturbances, vertical and cross-shore larval distributions were consistent throughout the 2 yr study period. Early-stage nauplii and Chthamalus fissus cyprids tracked bottom depth, and cyprids were on average deeper than nauplii. Vertical distributions were not related to the mid-depth of the thermocline or thermal stratification. Early-stage nauplii had a broader cross-shore distribution than cyprids, which were concentrated at inshore stations. Nearshore cyprid concentration had a positive relationship with thermal stratification, and the center of distribution of cyprids was farther offshore during fall-winter when stratification decreased. These results suggest that thermal stratification elicits enhanced behavioral control of cyprids to remain close to shore and reach the adult habitat.
    Description: This material is based upon work supported by the National Science Foundation under grants OCE-1357290, OCE-1357327, OCE-1630459, and OCE- 1630474. Support was also provided by the University of San Diego and Woods Hole Oceanographic Institution.
    Keywords: Barnacle larvae ; Chthamalus fissus ; Early-stage nauplii ; Cyprids ; Hydrographic and hydrodynamic conditions
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2022-05-27
    Description: © The Author(s), 2021. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Yamhure, G. M., Reyns, N., & Pineda, J. High larval concentrations and onshore transport of barnacle cyprids associated with thermal stratification. Frontiers in Marine Science, 8, (2021): 748389, https://doi.org/10.3389/fmars.2021.748389.
    Description: To better understand the hydrodynamic and hydrographic conditions experienced by larvae in the nearshore (within 1 km of shore), and the role that larval behavior plays in mediating shoreward transport to adult benthic habitats, we examined the vertical distribution and concentration of barnacle cyprids in a shallow, nearshore region in southern California, United States. We collected high-resolution physical measurements of currents and temperature at 3 stations (8, 5, and 4 m depths), and high-frequency measurements of barnacle larvae at a 4 m deep station ∼300 m from shore. Larvae were sampled from distinct 1 m depth intervals between the surface and the bottom (0–1 m, 1–2 m, 2–3 m, 3 m-bottom), each hour for overnight periods that ranged between 13 to 24 h in five cruises during the summers of 2017 and 2018. Barnacle cyprids of Chthamalus fissus predominated in all samples. Thermal stratification decreased closer to shore, but when the nearshore-most station remained stratified (Δ°C m–1 ≥ 0.1), C. fissus cyprid concentrations were high to extremely abundant (exceeding 200 and 4,000 individuals m–3, respectively). There were significant positive correlations between thermal stratification and the log-transformed C. fissus concentration at cruise-to-cruise scales, and between stratification and vertical variability in the high-frequency cross-shore currents at 2-day scales. Additionally, estimated larval transport was relatively high and shoreward when nearshore thermal stratification was greatest. Significant, albeit small, diel differences in cyprid distributions were also observed, with the proportion of cyprids increasing near the surface at night, and concentrations greater during the day than at night. Collectively, these results suggest that thermal stratification increases larval supply to the nearshore, and may enhance onshore larval transport to augment chances of successful settlement and recruitment to the intertidal adult habitat.
    Description: This study was funded by the National Science Foundation under grants OCE-1357290, OCE-1357327, OCE-1630459, and OCE-1630474.
    Keywords: larval vertical distribution ; thermocline ; larval transport ; Chthamalus fissus ; diel cycles ; nearshore
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2022-05-26
    Description: © The Author(s), 2019. This article is distributed under the terms of the Creative Commons Attribution License. The definitive version was published in Hagerty, M. L., Reyns, N., Pineda, J., & Govindarajan, A. F. Diversity and distribution of nearshore barnacle cyprids in southern California through the 2015-16 El Nino. Peerj, 7, (2019): e7186, doi: 10.7717/peerj.7186.
    Description: Abundance, species diversity, and horizontal distributions of barnacle cyprids offshore of La Jolla, southern California were described from May 2014 to August 2016 to determine how the nearshore barnacle larval assemblage changed before, during, and after the 2015–16 El Niño. The entire water column was sampled at five stations located within one km of shore with water depths of 4, 6, 8, 10, and 12 m during 33 cruises that encompassed the time when El Niño conditions impacted the area. Nearshore temperature and thermal stratification was concurrently measured using a CTD. Six identified cyprid species, including Chthamalus fissus, Pollicipes polymerus, Megabalanus rosa, Tetraclita rubescens, Balanus glandula, and B. trigonus, along with four unknown species, were collected in our samples. DNA barcoding was used to confirm identifications in a subset of the larvae. C. fissus was more than eight times more abundant than any other species, and while abundance varied by species, cyprid density was highest for all species except for M. rosa before and after the El Niño event, and lower during the environmental disturbance. There were significant differences in cross-shore distributions among cyprid species, with some located farther offshore than others, along with variability in cross-shore distributions by season. C. fissus cyprids were closest to shore during spring-summer cruises when waters were the most thermally stratified, which supports previous findings that C. fissus cyprids are constrained nearshore when thermal stratification is high. Relative species proportions varied throughout the study, but there was no obvious change in species assemblage or richness associated with El Niño. We speculate that barnacle cyprid species diversity did not increase at our study site during the 2015–16 El Niño, as it has in other areas during previous El Niño Southern Oscillation events, due to the lack of anomalous northward flow throughout the 2015–16 event.
    Description: Funding for this project was provided by the National Science Foundation under grants OCE-1357290, OCE-1357327, OCE-1630459, and OCE-1630474, with supplemental funding provided by the University of San Diego and Woods Hole Oceanographic Institution. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.
    Keywords: Barnacle cyprids ; Chthamalus fissus ; DNA barcoding ; El Niño ; Larvae ; Species diversity
    Repository Name: Woods Hole Open Access Server
    Type: Article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...