ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  http://aquaticcommons.org/id/eprint/15124 | 403 | 2014-05-29 06:57:25 | 15124 | United States National Marine Fisheries Service
    Publication Date: 2021-07-03
    Description: Biomass indices, from commercial catch per unit of effort (CPUE) or random trawl surveys, are commonly used in fisheries stock assessments. Uncertainty in such indices, often ex-pressed as a coefficient of variation (CV), has two components: observation error, and annual variation in catchability. Only the former can be estimated directly. As a result, the CVs used for these indices either ignore the annual-variation component or assume a value for it (often implicitly). Two types of data for New Zealand stocks were examined: 48 sets of residuals and catchability estimates from stock assessments using either CPUE or trawl survey indices; and biomass estimates from 17 time series of trawl surveys with between 4 and 25 species per time series. These data show clear evidence of significant annual variation in catchability. With the trawl survey data, catchability was detectably extreme for many species in about one year in six. The assessment data suggest that this annual variability typically has a CV of about 0.2. For commercial CPUE the variability is slightly less, and a typical total CV (including both components) of 0.15 to 0.2. This is much less than the values of 0.3 to 0.35 that have commonly been assumed in New Zealand. Some estimates of catchability are shown to be implausible.
    Keywords: Fisheries ; Management
    Repository Name: AquaDocs
    Type: article , TRUE
    Format: application/pdf
    Format: application/pdf
    Format: 293-304
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-01-04
    Description: Over the past 60 years, the climate of East Antarctica cooled while portions of West Antarctica were among the most rapidly warming regions on the planet. The East Antarctic cooling is attributed to a positive trend in the Southern Annular Mode (SAM) and a strengthening of the westerlies, while West Antarctic warming is tied to zonally asymmetric circulation changes forced by the tropics. This study finds recent (post-1979) surface cooling of East Antarctica during austral autumn to also be tied to tropical forcing, namely, an increase in La Niña events. The recent increase in La Niña conditions forces a Rossby wave into the Southern Hemisphere that increases anticyclonic circulation over the South Atlantic. The South Atlantic anticyclone is associated with cold air advection, weakened northerlies, and increased sea ice concentrations across the western East Antarctic coast, which has increased the rate of cooling at Novolazarevskaya and Syowa stations after 1979. This enhanced cooling over western East Antarctica is tied more broadly to a zonally asymmetric temperature trend pattern across East Antarctica during autumn that is consistent with a tropically forced Rossby wave rather than a SAM pattern; the positive SAM pattern is associated with ubiquitous cooling across East Antarctica, which is not seen in temperature observations after 1979. We conclude that El Niño–Southern Oscillation-related circulation anomalies, particularly zonal asymmetries that locally enhance meridional wind, are an important component of East Antarctic climate variability during autumn, and future changes in tropical Pacific climate will likely have implications for East Antarctica. ©2017. American Geophysical Union. All Rights Reserved.
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-05
    Description: This study is concerned with blocking events (BEs) in the Southern Hemisphere (SH), their past variability, and future projections. ERA-Interim (ERA-I) is used to compare the historical output from four general circulation models (GCMs) from phase 5 of the Coupled Model Intercomparison Project (CMIP5); the output of the representative concentration pathway 4.5 and 8.5 (RCP4.5 and RCP8.5) projections are also examined. ERA-I shows that the higher latitudes of the South Pacific Ocean (SPO) are the main blocking region, with blocking occurring predominantly in winter. The CMIP5 historical simulations also agree well with ERA-I for annual and seasonal BE locations and frequencies. A reduction in BEs is observed in the SPO in the 2071–2100 period in the RCP4.5 projections, and this is more pronounced for the RCP8.5 projections and occurs predominantly during the spring and summer seasons. Preliminary investigations imply that the southern annular mode (SAM) is negatively correlated with blocking activity in the SPO in all seasons in the reanalysis. This negative correlation is also observed in the GCM historical output. However, in the RCP projections this correlation is reduced in three of the four models during summer, suggesting that SAM may be less influential in summertime blocking in the future.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2017-09-22
    Description: Using empirical orthogonal function (EOF) analysis and atmospheric reanalyses, the principal patterns of seasonal West Antarctic surface air temperature (SAT) and their connection to sea ice and the Amundsen Sea low (ASL) are examined. During austral summer, the leading EOF (EOF1) explains 35% of West Antarctic SAT variability and consists of a widespread SAT anomaly over the continent linked to persistent sea ice concentration anomalies over the Ross and Amundsen Seas from the previous spring. Outside of summer, EOF1 (explaining ~40%–50% of the variability) consists of an east–west dipole over the continent with SAT anomalies over the Antarctic Peninsula opposite those over western West Antarctica. The dipole is tied to variability in the southern annular mode (SAM) and in-phase El Niño–Southern Oscillation (ENSO)/SAM combinations that influence the depth of the ASL over the central Amundsen Sea (near 105°W). The second EOF (EOF2) during autumn, winter, and spring (explaining ~15%–20% of the variability) consists of a dipole shifted approximately 30° west of EOF1 with a widespread SAT anomaly over the continent. During winter and spring, EOF2 is closely tied to variability in ENSO and a tropically forced wave train that influences the ASL in the western Amundsen/eastern Ross Seas (near 135°W) with an opposite-sign circulation anomaly over the Weddell Sea; the ENSO-related circulation brings anomalous thermal advection deep onto the continent. The authors conclude that the ENSO-only circulation pattern is associated with SAT variability across interior West Antarctica, especially during winter and spring, whereas the SAM circulation pattern is associated with an SAT dipole over the continent.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-02-20
    Description: The South Pacific convergence zone (SPCZ) is the largest rainfall feature in the Southern Hemisphere, and is a critical component of the climate for South Pacific island nations and territories. The small size and isolated nature of these islands leaves them vulnerable to short- and long-term changes in the position of the SPCZ. Its position and strength is strongly modulated by El Niño–Southern Oscillation (ENSO), leading to large interannual variability in rainfall across the southwest Pacific including seasonal droughts and pluvials. Currently much of the analysis about SPCZ activity has been restricted to the satellite observation period starting in 1979. Here, the representation of the SPCZ in the Twentieth Century Reanalysis (20CR), which is a three-dimensional atmospheric reconstruction based only on surface observations, is discussed for the period since 1908. The performance of two versions of the 20CR (version 2 and version 2c) in the satellite era is compared with other reanalyses and climate observation products. The 20CR performs well in the satellite era. Extra surface observations spanning the SPCZ region from the longitude of the Cook Islands has improved the representation of the SPCZ during 1908–57 between 20CRv2 and 20CRv2c. The well-established relationship with ENSO is observed in both the representation of mean SPCZ position and intensity, and this relationship remains consistent through the entire 1908–2011 period. This suggests that the ENSO–SPCZ relationship has remained similar over the course of the past century, and gives further evidence that 20CRv2c performs well back to 1908 over the southwest Pacific region.
    Print ISSN: 0027-0644
    Electronic ISSN: 1520-0493
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2016-08-22
    Print ISSN: 2169-897X
    Electronic ISSN: 2169-8996
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2015-09-11
    Description: Significant austral spring trends have previously been observed in West Antarctica and Antarctic Peninsula temperatures and in atmospheric circulation across the southern Pacific and Atlantic. Here, physical mechanisms for the observed trends are investigated through analysis of monthly circulation and temperatures from the ERA-Interim dataset and outgoing longwave radiation (OLR) data. The negative pressure trend over the South Pacific during spring is strongest in September, while the positive pressure trend over the South Atlantic is strongest in October. Pressure trends in November are generally nonsignificant. The authors demonstrate that a significant September trend toward increased convection (reduced OLR) in the poleward portion of the South Pacific convergence zone (SPCZ) is statistically related to Rossby wave–like circulation changes across the southern oceans. The wave response is strongest over the South Pacific in September and propagates eastward to the South Atlantic in October. OLR-related changes are linearly congruent with around half of the observed total changes in circulation during September and October and are consistent with observed trends in South Pacific sea ice concentration and surface temperature over western West Antarctica and the western Antarctic Peninsula. These results suggest SPCZ variability in early spring, especially on the poleward side of the SPCZ, is an important contributor to circulation and surface temperature trends across the South Pacific/Atlantic and West Antarctica.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2002-04-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2003-06-01
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2013-01-01
    Description: The new South Pacific Enhanced Archive for Tropical Cyclones (SPEArTC) dataset provides an opportunity to develop a more complete climatology of tropical cyclones (TCs) in the southwest Pacific. Here, spatial patterns and characteristics of TCs for the 41-yr period beginning with the 1969/70 season are related to phases of the El Niño–Southern Oscillation (ENSO), taking into account the degree of ocean–atmosphere coupling. Twentieth-century reanalysis data and the coupled ENSO index (CEI) were used to investigate TC genesis areas and climate diagnostics in the extratropical transition (ETT) region at and south of 25°S during different CEI ENSO phases. This is the first study looking at CEI-based ENSO phases and the more detailed relationship of TCs to the coupling of the ocean and atmosphere during different ENSO phases. Consistent with previous findings, positive relationships exist among TCs, sea surface temperature, and atmospheric circulation. A statistically significant greater frequency of major TCs was found during the latter half of the study period (1991–2010) compared to the 1970–90 period, again consistent with the findings of other studies. Also found were significant and consistent linkages highlighting the interplay of TCs and sea surface temperature (SSTs) in the southwest Pacific basin west of 170°E and a closer connection to atmospheric circulation east of 170°E. Moreover, this study demonstrates subtle differences between a fully coupled El Niño or La Niña and atmospheric- or ocean-dominated phases, or neutral conditions.
    Print ISSN: 0894-8755
    Electronic ISSN: 1520-0442
    Topics: Geography , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...