ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    The journal of supercomputing 16 (2000), S. 7-25 
    ISSN: 1573-0484
    Keywords: microcontroller ; fault-tolerance ; embedded computing ; real-time computing ; fault-insertion testing ; space radiation ; single-event effects (SEE)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Computer Science
    Notes: Abstract Inexpensive commodity microcontrollers are extremely attractive for offloading low-level, real-time computations from high-performance spacecraft computers due to their high functional density and low power, but they have not been widely used because of their low radiation tolerance. This paper presents a fault-tolerant microcontroller configuration specifically designed to tolerate space-radiation effects that be used for embedded real-time control in spacecraft. The requirements and fault-environment are examined, then an architecture is presented. An experimental testbed is described along with fault-insertion test results.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: This is a fault-tolerant random access memory for use in fault-tolerant computers. It comprises a plurality of memory chips each comprising a plurality of on-line testable and correctable memory cells disposed in rows and columns for holding individually addressable binary bits and provision for error detection incorporated into each memory cell for outputting an error signal whenever a transient error occurs therein. In one embodiment, each of the memory cells comprises a pair of static memory sub-cells for simultaneously receiving and holding a common binary data bit written to the memory cell and the error detection provision comprises comparator logic for continuously sensing and comparing the contents of the memory sub-cells to one another and for outputting the error signal whenever the contents do not match. In another embodiment, each of the memory cells comprises a static memory sub-cell and a dynamic memory sub-cell for simultaneously receiving and holding a common binary data bit written to the memory cell and the error detection provision comprises comparator logic for continuously sensing and comparing the contents of the static memory sub-cell to the dynamic memory sub-cell and for outputting the error signal whenever the contents do not match. Capability for correction of errors is also included.
    Keywords: COMPUTER OPERATIONS AND HARDWARE
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: A technique for minimizing the power dissipated in a Very Large Scale Integration (VLSI) chip by lowering the operating voltage without any significant penalty in the chip throughput even though low voltage operation results in slower circuits. Since the overall throughput of a VLSI chip depends on the speed of the critical path(s) in the chip, it may be possible to sustain the throughput rates attained at higher voltages by operating the circuits in the critical path(s) with a high voltage while operating the other circuits with a lower voltage to minimize the power dissipation. The interface between the gates which operate at different voltages is crucial for low power dissipation since the interface may possibly have high static current dissipation thus negating the gains of the low voltage operation. The design of a voltage level translator which does the interface between the low voltage and high voltage circuits without any significant static dissipation is presented. Then, the results of the mixed voltage design using a greedy algorithm on three chips for various operating voltages are presented.
    Keywords: ELECTRONICS AND ELECTRICAL ENGINEERING
    Type: New Mexico Univ., The Fifth NASA Symposium on VLSI Design; 12 p
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Logic isomers are labeled, 2-isomorphic graphs that implement the same logic function. Logic isomers may have significantly different power requirements even though they have the same number of transistors in the implementation. The power requirements of the isomers depend on the transition activity of the input signals. The power requirements of isomorphic graph isomers of n-input NAND and NOR gates are shown. Choosing the less power-consuming isomer instead of the others can yield significant power savings. Experimental results on a ripple-carry adder are presented to show that the implementation using the least power-consuming isomers requires approximately 10 percent less power than the implementation using the most power-consuming isomers. Simulations of other random logic designs also confirm that designs using less power-consuming isomers can reduce the logic power demand by approximately 10 percent as compared to designs using more power-consuming isomers.
    Keywords: COMPUTER OPERATIONS AND HARDWARE
    Type: New Mexico Univ., The Fifth NASA Symposium on VLSI Design; 11 p
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The current trend in commercial processors of moving to many cores (30 to100 and beyond) on a single die poses both an opportunity and a challenge for space based processing. 1 2 The opportunity is to leverage this trend for space application and thus provide an order of magnitude increase in onboard processing capability. The challenge is to provide the requisite reliability in an extremely challenging environment. In this paper, we will discuss the requirements for reliable space based multicore computing and approaches being explored to deliver this capability within NASA's extremely tight power, mass, and cost constraints.
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: IEEEAC Paper 1163 , IEEE Aerospace Conference; Mar 05, 2011 - Mar 12, 2011; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Spacecraft Instrumentation and Astrionics
    Type: IEEE Aerospace Conference; Mar 05, 2011 - Mar 11, 2011; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-12
    Description: A proposed computer architecture would exploit the capabilities of commercially available field-programmable gate arrays (FPGAs) to enable computers to detect and recover from bit errors. The main purpose of the proposed architecture is to enable fault-tolerant computing in the presence of single-event upsets (SEUs). [An SEU is a spurious bit flip (also called a soft error) caused by a single impact of ionizing radiation.] The architecture would also enable recovery from some soft errors caused by electrical transients and, to some extent, from intermittent and permanent (hard) errors caused by aging of electronic components. A typical FPGA of the current generation contains one or more complete processor cores, memories, and highspeed serial input/output (I/O) channels, making it possible to shrink a board-level processor node to a single integrated-circuit chip. Custom, highly efficient microcontrollers, general-purpose computers, custom I/O processors, and signal processors can be rapidly and efficiently implemented by use of FPGAs. Unfortunately, FPGAs are susceptible to SEUs. Prior efforts to mitigate the effects of SEUs have yielded solutions that degrade performance of the system and require support from external hardware and software. In comparison with other fault-tolerant- computing architectures (e.g., triple modular redundancy), the proposed architecture could be implemented with less circuitry and lower power demand. Moreover, the fault-tolerant computing functions would require only minimal support from circuitry outside the central processing units (CPUs) of computers, would not require any software support, and would be largely transparent to software and to other computer hardware. There would be two types of modules: a self-checking processor module and a memory system (see figure). The self-checking processor module would be implemented on a single FPGA and would be capable of detecting its own internal errors. It would contain two CPUs executing identical programs in lock step, with comparison of their outputs to detect errors. It would also contain various cache local memory circuits, communication circuits, and configurable special-purpose processors that would use self-checking checkers. (The basic principle of the self-checking checker method is to utilize logic circuitry that generates error signals whenever there is an error in either the checker or the circuit being checked.) The memory system would comprise a main memory and a hardware-controlled check-pointing system (CPS) based on a buffer memory denoted the recovery cache. The main memory would contain random-access memory (RAM) chips and FPGAs that would, in addition to everything else, implement double-error-detecting and single-error-correcting memory functions to enable recovery from single-bit errors.
    Keywords: Man/System Technology and Life Support
    Type: NPO-30806 , NASA Tech Briefs, August 2004; 11
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: Architectural issues and approaches for implementing fault-tolerant parallel processors in avionics systems and other dedicated applications requiring high levels of dependability are discussed. For these systems it is desirable to provide both a high degree of fault tolerance and a system that can operate for extended periods of time without external maintenance. With current technology it is possible to operate dependably for months between maintenance events. The longer-term goal should be maintenance-free operation (a computer that outlasts its host system). It is argued that new high-density packaging techniques may make this type of long-life fault-tolerant design an attractive choice in controlling the life-cycle costs of the next generation of systems.
    Keywords: COMPUTER SYSTEMS
    Type: IEEE/AIAA/NASA Digital Avionics Systems Conference; Oct 15, 1990 - Oct 18, 1990; Virginia Beach, VA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-12
    Description: In a proposed approach to programming and utilization of commercial off-the-shelf computing equipment, a combination of algorithm-based fault tolerance (ABFT) and replication would be utilized to obtain high degrees of fault tolerance without incurring excessive costs. The basic idea of the proposed approach is to integrate ABFT with replication such that the algorithmic portions of computations would be protected by ABFT, and the logical portions by replication. ABFT is an extremely efficient, inexpensive, high-coverage technique for detecting and mitigating faults in computer systems used for algorithmic computations, but does not protect against errors in logical operations surrounding algorithms.
    Keywords: Computer Programming and Software
    Type: NPO-43842 , NASA Tech Briefs, November 2008; 37-38
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-12
    Description: Proposed static random-access memory for computer features improved error-detecting and -correcting capabilities. New self-testing scheme provides for detection and correction of errors at any time during normal operation - even while data being written into memory. Faults in equipment causing errors in output data detected by repeatedly testing every memory cell to determine whether it can still store both "one" and "zero", without destroying data stored in memory.
    Keywords: ELECTRONIC SYSTEMS
    Type: NPO-17939 , NASA Tech Briefs (ISSN 0145-319X); 15; 2; P. 30
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...