ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1365-2427
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: 1. Interstitial bacterial abundance, production and ectoenzyme activity were investigated over an annual cycle in an Austrian river when infiltration of oligotrophic river water into a river-bank was artificially enhanced. These microbial parameters were related to porewater chemistry and the concentration of particulate (POC) and dissolved organic carbon (DOC).2. Porewater chemistry reflected the hydrodynamic mixing of infiltrating river water with riparian groundwater. Seasonal fluctuations in the microbial parameters resulted mainly from changes in temperature and organic matter supply. Seasonal change in porewater chemistry in the river-bank was detectable laterally only within the first metre of the sediment and decreased rapidly with increasing distance from the sediment–water interface.3. The DOC concentration decreased only slightly during lateral transport through the aquifer, while total organic carbon (TOC) concentration as well as abundance and activity of interstitial bacteria were reduced by up to one order of magnitude within the top metre of the sediment. Retention of incoming particulate matter structured the lateral distribution pattern of TOC concentration. The POC and not the DOC pool was the main source of carbon for interstitial bacteria and, therefore, the quality of POC determines the distribution of microbial metabolism within the riparian zone.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-5117
    Keywords: ice cover ; shallow lake ; bacterioplankton ; phytoplankton ; growth efficiency ; dissolved organic matter ; humic matter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract In an attempt to assess bacterioplankton production and growth yieldunder low temperature conditions and to compare bacterioplankton withphytoplankton production in the ice-covered water column of the shallowNeusiedler See, outdoor measurements under near in situ conditions wereperformed during the winter of 1995/96. During the investigation period,mean chlorophyll (Chl) a concentration was 21.03 ± 14.95 µg Chla l-1. Phytoplankton primary production integrated over thewater column ranged from 1.35 to production integrated over the water columnranged from 1.35 to 4.23 mg C m-2 d-1 (mean± SD = 2.46 ± 1.06 mg C m-2d-1). Bacterial abundance varied from 20 to 40×105 ml-1 for most of the investigationperiod and increased by the end of March concomitantly with the increase intemperature from 1.3 to 6.3 °C within 5 days. Mean bacterial productionwas 15.3 ± 12.8 µg C l-1 d-1(range: 3.0 to 41.7 µg C l-1 d-1) and meanbacterial growth rate 0.23 ± 0.16 d-1 following closelythe pattern in bacterial production. DOC concentration declined linearlyfrom 20.7 mg C l-1 to 16.45 mg C l-1 over the 4months period of ice cover. The contribution of humic substances to thetotal DOC pool declined from 43.6% at the end of November to37.3% at the end of March. Calculated on an area basis, phytoplanktonproduction amounted to only 16% of bacterial production which makesit unlikely that phytoplankton supply substrate for bacterioplankton growthin significant quantities when the lake is ice covered. From the observeddecline in DOC over the investigation period and assuming only negligibleinput of DOC from other sources we calculated an average DOC uptake by thebacterioplankton community of 47.5 µg C l-1d-1 resulting in a bacterial growth efficiency of 15.9%for the ice covered conditions. Based on the growth efficiency we estimatethat pelagic primary production amounts to 2.8% of the bacterialcarbon demand. This might indicate that the bacterioplankton in NeusiedlerSee sustain their high growth rates at low temperatures (〈2°C formost of the investigation period) by using probably the DOC originating fromthe previous season. This DOM stems most likely from the decay of the reedPhragmites australis and its epiphytes and, probably of minor importance,from phytoplankton leachates.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-5052
    Keywords: Bacterial utilization ; Bacterioplankton ; Dissolved organic matter (DOM) ; Radiation ; Ultraviolet-B (UV-B)
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Attenuation of ultraviolet (UV)-radiation into the water column is highly correlated with the concentration of the dissolved organic matter (DOM). Thus UV penetrates deeper into marine waters than into freshwater systems. DOM is efficiently cleaved by solar surface radiation levels consuming more oxygen than bacterial metabolism. This photolytically cleaved DOM exhibits higher absorbance ratios (250/365 nm) than untreated DOM. Natural bacterioplankton reach higher abundance if inoculated in previously solar-exposed DOM than in untreated DOM; during bacterial growth the absorbance ratio declines steadily indicating the utilization of the photolytically cleaved DOM. On the other hand, bacterioplankton are greatly reduced in their activity if exposed to surface solar radiation levels. Photoenzymatic repair of DNA induced by UV-A radiation, however, leads to an efficient recovery of bacterial activity once the UV-B stress is released. Turbulent mixing of the upper layers of the water column leads to a continuous alteration of the UV exposure regime. Close to the surface, bacteria and DOM are exposed to high levels of UV-B leading to a reduction in bacterial activity and to photolysis of DOM. Once mixed into deeper layers where UV-B is attenuated, but sufficient UV-A is remaining to allow photoenzymatic repair, the photolytically cleaved DOM is efficiently taken up by bacterioplankton leading to even higher bacterial activity than prior to the exposure. Thus, the overall effect of UV on bacterioplankton is actually an enhancement of bacterial activity despite their lack of protective pigments.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 1999-10-26
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1997-07-01
    Print ISSN: 0024-3590
    Electronic ISSN: 1939-5590
    Topics: Biology , Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...