ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2018-06-28
    Print ISSN: 0956-540X
    Electronic ISSN: 1365-246X
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2020-10-29
    Description: Transducers with a larger aperture size are desirable in ultrasound imaging to improve resolution and image quality. A coherent multi-transducer ultrasound imaging system (CoMTUS) enables an extended effective aperture through the coherent combination of multiple transducers. In this study, the discontinuous extended aperture created by CoMTUS and its performance for deep imaging and through layered media are investigated by both simulations and experiments. Typical image quality metrics—resolution, contrast and contrast-to-noise ratio—are evaluated and compared with a standard single probe imaging system. Results suggest that the image performance of CoMTUS depends on the relative spatial location of the arrays. The resulting effective aperture significantly improves resolution, while the separation between the arrays may degrade contrast. For a limited gap in the effective aperture (less than a few centimetres), CoMTUS provides benefits to image quality compared to the standard single probe imaging system. Overall, CoMTUS shows higher sensitivity and reduced loss of resolution with imaging depth. In general, CoMTUS imaging performance was unaffected when imaging through a layered medium with different speed of sound values and resolution improved up to 80% at large imaging depths.
    Electronic ISSN: 2076-3417
    Topics: Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2016-10-21
    Description: With the prospects of seismic equipment being able to measure rotational ground motions in a wide frequency and amplitude range in the near future, we engage in the question of how this type of ground motion observation can be used to solve the seismic source inverse problem. In this paper, we focus on the question of whether finite-source inversion can benefit from additional observations of rotational motion. Keeping the overall number of traces constant, we compare observations from a surface seismic network with 44 three-component translational sensors (classic seismometers) with those obtained with 22 six-component sensors (with additional three-component rotational motions). Synthetic seismograms are calculated for known finite-source properties. The corresponding inverse problem is posed in a probabilistic way using the Shannon information content to measure how the observations constrain the seismic source properties. We minimize the influence of the source receiver geometry around the fault by statistically analyzing six-component inversions with a random distribution of receivers. Since our previous results are achieved with a regular spacing of the receivers, we try to answer the question of whether the results are dependent on the spatial distribution of the receivers. The results show that with the six-component subnetworks, kinematic source inversions for source properties (such as rupture velocity, rise time, and slip amplitudes) are not only equally successful (even that would be beneficial because of the substantially reduced logistics installing half the sensors) but also statistically inversions for some source properties are almost always improved. This can be attributed to the fact that the (in particular vertical) gradient information is contained in the additional motion components. We compare these effects for strike-slip and normal-faulting type sources and confirm that the increase in inversion quality for kinematic source parameters is even higher for the normal fault. This indicates that the inversion benefits from the additional information provided by the horizontal rotation rates, i.e., information about the vertical displacement gradient.
    Print ISSN: 1869-9510
    Electronic ISSN: 1869-9529
    Topics: Geosciences
    Published by Copernicus on behalf of European Geosciences Union.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-02-01
    Print ISSN: 0045-6535
    Electronic ISSN: 1879-1298
    Topics: Energy, Environment Protection, Nuclear Power Engineering
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2021-05-12
    Description: We implement a new algorithm to model acoustic wave propagation through and around a dolphin skull, using the k-Wave software package [1]. The equation of motion is integrated numerically in a complex three-dimensional structure via a pseudospectral scheme which, importantly, accounts for lateral heterogeneities in the mechanical properties of bone. Modeling wave propagation in the skull of dolphins contributes to our understanding of how their sound localization and echolocation mechanisms work. Dolphins are known to be highly effective at localizing sound sources; in particular, they have been shown to be equally sensitive to changes in the elevation and azimuth of the sound source, while other studied species, e.g. humans, are much more sensitive to the latter than to the former. A laboratory experiment conducted by our team on a dry skull [2] has shown that sound reverberated in bones could possibly play an important role in enhancing localization accuracy, and it has been speculated that the dolphin sound localization system could somehow rely on the analysis of this information. We employ our new numerical model to simulate the response of the same skull used by [2] to sound sources at a wide and dense set of locations on the vertical plane. This work is the first step towards the implementation of a new tool for modeling source (echo)location in dolphins; in future work, this will allow us to effectively explore a wide variety of emitted signals and anatomical features.
    Description: Published
    Description: id 3
    Description: 7A. Geofisica per il monitoraggio ambientale
    Description: JCR Journal
    Keywords: Dolphin’s echolocation ; Numerical modeling ; Reverberation ; Correlation ; 05.05. Mathematical geophysics
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-03-05
    Description: The scalar 2-D Helmholtz equation (i.e. ‘membrane waves’) can be used to model surface- wave propagation in a laterally smooth, lossless half-space. Building on this known result, we develop an algorithm to localize earthquake sources based on surface-wave data, via numerical time reversal on a membrane, where monochromatic waves propagate with the phase velocity of Rayleigh or Love waves at the same frequency. By conducting monochromatic membrane- wave time-reversal simulations at various frequencies and combining the results, broad-band time-reversed surface waves can be modelled. Importantly, membrane-wave modelling is computationally much less expensive than 3-D surface-wave modelling. We first explain rigorously the relationship between surface waves and membrane waves. Our mathematical treatment is slightly different from those found in the literature, in that it does not invoke variational principles. We next implement our time-reversal algorithm via spectral elements as well as simple ray tracing. Both implementations account for the effects of lateral variations in phase velocity. We validate the two resulting tools by means of several numerical experiments. This includes synthetic tests, as well as the localization of a virtual source based on a data set of real ambient-noise cross-correlations, and the localization of the epicentre of a real earthquake from real, raw data. In this study, applications are limited to northern Italy and the Alpine arc, where we have access to recent, high-resolution phase velocity maps, ambient- noise cross-correlations and data from a recent, relatively large earthquake. The accuracy of epicentre location despite non-uniformity in station coverage encourages further applications of our method, in particular to the task of mapping large-earthquake rupture in space and time.
    Description: Published
    Description: 1-21
    Description: 2T. Sorgente Sismica
    Description: JCR Journal
    Keywords: Earthquake dynamics ; Earthquake source observations ; Theoretical seismology ; Wave propagation
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...