ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    ISSN: 1432-2048
    Keywords: Key words: Callose ; Cellobiohydrolase ; Cellulose ; Nicotiana (pollen tube) ; Pollen grain ; Pollen tube
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract. The distribution of cellulose and callose in the walls of pollen tubes and grains of Nicotiana tabacum L. was examined by electron microscopy using gold-labelled cellobiohydrolase for cellulose and a (1,3)-β-D-glucan-specific monoclonal antibody for callose. These probes provided the first direct evidence that cellulose co-locates with callose in the inner, electron-lucent layer of the pollen-tube wall, while both polymers are absent from the outer, fibrillar layer. Neither cellulose nor callose are present in the wall at the pollen-tube tip or in cytoplasmic vesicles. Cellulose is first detected approximately 5–15 μm behind the growing tube tip, just before a visible inner wall layer commences, whereas callose is first observed in the inner wall layer approximately 30 μm behind the tip. Callose was present throughout transverse plugs, whereas cellulose was most abundant towards the outer regions of these plugs. This same distribution of cellulose and callose was also observed in pollen-tube walls of N. alata Link et Otto, Brassica campestris L. and Lilium longiflorum Thunb. In pollen grains of N. tabacum, cellulose is present in the intine layer of the wall throughout germination, but no callose is present. Callose appears in grains by 4 h after germination, increasing in amount over at least the first 18 h, and is located at the interface between the intine and the plasma membrane. This differential distribution of cellulose and callose in both pollen tubes and grains has implications for the nature of the β-glucan biosynthetic machinery.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1432-2048
    Keywords: Cucurbitaceae (phloem protein) ; Lectin ; Phloem exudate and protein ; Protein, phloem
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Abstract Phloem exudates from Cucurbita, Cucumis, and Citrullus were gelled by oxidative formation of disulphide bridges between the phloem filaments. Gellation could be inhibited by dithiothreitol or iodoacetamide and did not require the presence of the phloem lectin. Each exudate contained a dimeric lectin of similar relative molecular mass and purified specific activity; these were all specific for oligomers of N-acetyl-glucosamine, and shared antigenic determinants. The similarity of the phloem proteins between Cucurbita, Cucumis, and Citrullus implied that they served the same function in each genus. This is postulated to be the sealing of wounded sieve-tubes, with the lectin on the filaments binding and preventing the entry of micro-organisms. The phloem lectin and the filament-forming protein from Cucurbita shared sequence homologies as judged by amino-acid-composition comparisons, but antibodies raised against each showed no cross-reactivity with the other protein. The exudates from Cucurbita and Cucumis may contain a high concentration of phloem proteins because the large diameter of their sieve-pores does not allow rapid blocking by callose synthesis on wounding, and a chemical mechanism of gellation is required.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1615-6102
    Keywords: Copper ; Nicotiana ; Pollen ; Pollen tube ; Poly(ethylene glycol) ; Tip growth
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Growth of pollen tubes ofNicotiana tabacum W 38 in a defined liquid medium buffered at pH 5.9 and containing sucrose, amino-acids, boric acid, salts and an antibacterial agent was stimulated by the addition of poly(ethylene glycol) 6000 (PEG-6000) and Cu(II) salts. In the absence of both these supplements, up to 50% of the hydrated pollen grains did not develop further, and the germinated tubes were slow-growing and abnormal, with thickened walls, kinked growth, and fragile, swollen tips containing granular cytoplasm. Addition of 10–15% (w/v) purified PEG-6000 increased germination to 80–90% and prevented the progressive bursting of pollen grains and tube tips, but growth was still slow and kinked and tips remained swollen. Addition of 30 μM CuSO4 did not stimulate germination or prevent tip bursting, but produced straight-growing tubes with smooth-sided tips resembling the tips of tubes growing through stylar tissue; the free Cu2+ concentration under these conditions was about 1.0 μM due to chelation by amino-acids, and similar tube morphologies were obtained with 1.0–1.5 μM added CuSO4 when NH4Cl replaced the amino-acids. When the medium containing amino-acids was supplemented with both 12.5% PEG-6000 and 30 μM CuSO4, long-term (48 h) growth of straight pollen tubes with smooth-sided tips, thin walls and long ladders of callose plugs was observed; growth occurred at 250 μm/h, approximately 30–40% of the rate observed in the style. Although omission of CuSO4 from this complete medium severely affected tube growth and callose plug deposition, it did not alter the timing of generative-nucleus division, and thus the different parameters associated with the second phase of pollen-tube growth can be uncoupled in culture. High levels of FeSO4 (300 μM) had a similar morphogenetic effect to CuSO4, but addition of 300 μM L-ascorbate or D-iso-ascorbate was required to prevent precipitation of Fe(III) oxide and prolong the stimulation of pollen-tube growth; EDTA removed the morphogenetic effect of both CuSO4 and FeSO4. Further, an impure grade of PEG-4000 was contaminated with an organic morphogen that allowed continued slow growth of pollen tubes with smooth, straight-sided tips in the absence of added CuSO4 or FeSO4, with tube morphology unaffected by ascorbate or EDTA. However, the long-term morphogenetic effect of trace levels of CuSO4 suggests that Cu(II) salts play an important role in pollen-tube development in at least this species ofNicotiana.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1615-6102
    Keywords: Arabinogalactan protein ; Endocytosis ; Nicotiana ; Pollen ; Pollen tube
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Monoclonal antibody PCBC3, raised against stylar extracts fromNicotians, alata flowers, was deduced from enzyme-linked immunosorbent assays and inhibition of immuno-gold labelling on tissue sections to bind specifically to carbohydrate epitopes on arabinogalactan proteins (AGPs) but not to other arabinose-containing cell wall polysaccharides. When pollen grains ofN. tabacum were hydrated in fixative, PCBC3 bound to vesicles in the vicinity of the endoplasmic reticulum but, when grains were hydrated for 20 min in culture medium before fixation, binding was restricted to the plasma membrane. The generative-cell plasma membrane was also labelled in grains ofLycopersicon peruvianum. In pollen tubes ofN. tabacum grown in liquid culture, the AGPs detected by PCBC3 were located in several regions, including the plasma membrane, tubular-vesicular structures (plasmalemmasomes) at and under the plasma membrane, and multilamellar bodies within vacuoles, features generally associated with endocytosis. Labelling was not evident in secretory vesicles or the plasma membrane at the pollen-tube tip. The AGPs detected with PCBC3 were also present in pollen-tube walls, near the interface between the inner, callosic layer and the outer, fibrillar, pectic layer. Pollen tubes ofN. tabacum grown in medium lacking added CuSO4 produce a wall with an abnormally thickened fibrillar layer, and this layer was uniformly labelled with PCBC3. The disposition of wall AGPs thus changes in pollen tubes of different morphologies.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 174 (1993), S. 101-115 
    ISSN: 1615-6102
    Keywords: Nicotiana ; Pollen ; Pollen tube ; Generative nucleus ; Sperm nuclei ; DAPI staining
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Production of sperm cells by division of the generative cell occurs during growth ofNicotiana (tobacco) pollen tubes through the sporophytic tissue of the style, and is associated with transition to the second phase of pollen-tube growth. WhenNicotiana pollen tubes are grown in liquid culture, the extent of generative-nucleus division and the timing of this division depend on the chemical composition of the medium. Addition of reduced forms of nitrogen, either as mixed amino-acids (0.03% w/v of an acid hydrolysate of casein) or as 1 mM ammonium chloride, induces division of the generative nucleus in over 90% of the tubes; 3 mM calcium nitrate does not stimulate division. Individual amino-acids differ in their ability to induce this division. Contaminants in some batches of poly(ethylene glycol), which is a major component of pollen-tube growth media, inhibit generative-nucleus division; this inhibition is greater in the absence of nitrogen, which increases the observed nitrogen-dependence of division. Reduced forms of nitrogen are also required for growth of pollen tubes after division, when callose plugs are deposited. In the absence of nitrogen, growth continues until the point where sperm cell production would normally occur, then ceases. Addition of amino-acids or ammonium chloride thus allows cultured pollen tubes ofNicotiana to progress to their second phase of growth. WhenNicotiana pollen is germinated in a complete culture medium at 25–26°C, sperm nuclei are first observed in the growing tubes after about 10 h, and by about 16 h most of the tubes have undergone division; at lower temperatures, division is delayed. The timing of division also varies between species ofNicotiana, but division occurs similarly in self-compatible and self-incompatible species. Anaphase in an individual pollen tube is calculated to take less than 4 min. The resultant sperm nuclei usually trail behind the vegetative nucleus, but a variety of arrangements of the three nuclei are observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Springer
    Protoplasma 175 (1993), S. 126-130 
    ISSN: 1615-6102
    Keywords: Endocytosis ; Pollen tubes ; Fluorescent dextrans ; Vacuoles
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology
    Notes: Summary Pollen tubes grow by tip growth, with high levels of exocytosis at the apex. The commercial availability of FITC labelled α-linked dextrans provides a source of biologically inert tracers for endocytotic activity in pollen tubes. Growing tubes ofNicotiana andTradescantia were transferred to media containing 1% FD-4 for varying period of time before washing in control media and observation in a fluorescence microscope. Fluorescent material appeared to enter the pollen tubes only at the tip region, and to accumulate in vacuoles, starting with smaller vacuoles near the tip and spreading to the main vacuolated part of the tube. Mature tubes, with callose plugs, were only labelled up to the first complete plug from the tip, younger tubes without plugs were labelled into the pollen grain vacuole. The fluorescent material within the pollen tubes was shown to represent uptake of intact high molecular weight dextran by the following criteria: (i) free FITC and low molecular weight dextrans could not be detected in any of the media or pollen tubes using thin layer chromatography and (ii) pollen tube growth rates were unaffected by the fluorescent dextran, but were severely inhibited by low levels of free FITC. It was concluded that the dextrans entered the tubes by endocytosis, possibly in the tip region, and were then transferred to the vacuole system of the pollen tube.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Hoboken, NJ : Wiley-Blackwell
    AIChE Journal 14 (1968), S. 245-250 
    ISSN: 0001-1541
    Keywords: Chemistry ; Chemical Engineering
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Notes: A limited number of tests were made of promoters, their method of application, corrosion resistance, etc.The best promoter found to date is tetrakis octadecyl thio silane (C18H37S)4Si which differs only in parafinic chain length from (C12H25S)4Si which was found to be one of the best promoters for drop-by-drop condensation by Blackman and Dewar (1, 2), Hampson (2, 3), and Osment (4, 5). These compounds are nontoxic.The C18 compound appears to be superior to the C12 compound in that it is less volatile, lower melting (∼34°C), and appears to impart superior oxidation resistance to copper when adsorbed on clean oxide-free metal.Copper tubes can be rapidly cleaned in place by sulfur dioxide or hydrochloric acid in steam, or, if previously promoted by a thio silane, by treatment first with chlorine gas in steam.The thio silanes may be rapidly applied as a 1% solution in octanoic acid injected into the sea-water feed. The acid acts as cleaner and poor promoter, allowing the good promoter molecules to contact the metal tube.The amounts of the best promoters required are in the parts per billion range.
    Additional Material: 2 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1979-11-01
    Print ISSN: 0556-2813
    Electronic ISSN: 1089-490X
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 1998-08-24
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 1983-06-01
    Print ISSN: 0032-0935
    Electronic ISSN: 1432-2048
    Topics: Biology
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...