ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Language
  • 1
    Monograph available for loan
    Monograph available for loan
    London : The Geological Society
    Associated volumes
    Call number: 9/M 07.0421(353) / 1. Ex. ; 9/M 07.0421(353) / 2. Ex. ; 9/M 07.0421(353) / 3. Ex.
    In: Geological Society special publication
    Description / Table of Contents: Despite agreement on first-order features and mechanisms, critical aspects of the origin and evolution of the Tibetan Plateau, such as the exact timing and nature of collision, the initiation of plateau uplift, and the evolution of its height and width, are disputed, untested or unknown. This book gathers papers dealing with the growth and collapse of the Tibetan Plateau. The timing, the underlying mechanisms, their interactions and the induced surface shaping, contributing to the Tibetan Plateau evolution are tightly linked via coupled and feedback processes. We present interdisciplinary contributions allowing insight into the complex interactions between lithospheric dynamics, topography building, erosion, hydrological processes and atmospheric coupling. The book is structured in four parts: early processes in the plateau formation; recent growth of the Tibetan Plateau; mechanisms of plateau growth; and plateau uplift, surface processes and the monsoon.
    Type of Medium: Monograph available for loan
    Pages: 255 S. : z.T. farb. Ill., graph. Darst.
    ISBN: 9781862393264
    Series Statement: Geological Society special publication 353
    Classification:
    Lithosphere
    Location: Reading room
    Location: Reading room
    Location: Reading room
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Branch Library: GFZ Library
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Description / Table of Contents: Despite agreement on first-order features and mechanisms, critical aspects of the origin and evolution of the Tibetan Plateau, such as the exact timing and nature of collision, the initiation of plateau uplift, and the evolution of its height and width, are disputed, untested or unknown. This book gathers papers dealing with the growth and collapse of the Tibetan Plateau. The timing, the underlying mechanisms, their interactions and the induced surface shaping, contributing to the Tibetan Plateau evolution are tightly linked via coupled and feedback processes. We present interdisciplinary contributions allowing insight into the complex interactions between lithospheric dynamics, topography building, erosion, hydrological processes and atmospheric coupling. The book is structured in four parts: early processes in the plateau formation; recent growth of the Tibetan Plateau; mechanisms of plateau growth; and plateau uplift, surface processes and the monsoon.
    Pages: Online-Ressource (255 Seiten)
    ISBN: 9781862393264
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2023-11-17
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Detrital single‐grain zircon U–Pb geochronology is a powerful tool for provenance studies if information on the source rocks is available. This paper proposes a new source‐rock classification tool that uses the degree of annealing of radiation damage in detrital zircon; the annealing is expressed by the relationship between the width (full‐width at half‐maximum; FWHM) of the 〈italic toggle="no"〉v〈/italic〉〈sub〉3〈/sub〉[SiO〈sub〉4〈/sub〉] Raman band at ~1008 cm〈sup〉−1〈/sup〉 and the calculated α‐dose. The host rocks of the zircons are classified into three types according to their emplacement process and/or thermal history: volcanic and rapidly cooled plutonic and high‐grade metamorphic rocks (type 1); rocks with hydrothermal zircons (type 2); slowly cooled igneous and metamorphic rocks (type 3). We construct a naive Bayes prediction model by training it with a collection of zircons of known types. The unknown zircons are assigned a probability of derivation from a specific host‐rock type. This classification scheme is best used as an accessory tool in provenance studies that apply detrital zircon U–Pb geochronology.〈/p〉
    Description: 〈p xmlns:mml="http://www.w3.org/1998/Math/MathML" xml:lang="en"〉Zircons are classified into three types based on annealing state revealed by Raman analysis and calculated α‐dose. This classification can be used to distinguish zircon in provenance study.〈boxed-text position="anchor" content-type="graphic" id="gj4751-blkfxd-0001" xml:lang="en"〉 〈graphic position="anchor" id="jats-graphic-1" xlink:href="urn:x-wiley:00721050:media:gj4751:gj4751-toc-0001"〉 〈/graphic〉 〈/boxed-text〉〈/p〉
    Description: Natural Science Foundation of Hubei Province http://dx.doi.org/10.13039/501100003819
    Description: National Natural Science Foundation of China http://dx.doi.org/10.13039/501100001809
    Keywords: ddc:549 ; annealing ; Bayesian probability ; provenance analysis ; radiation damage ; zircon classification
    Language: English
    Type: doc-type:article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1476-4687
    Source: Nature Archives 1869 - 2009
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Notes: [Auszug] Tectonic models for the evolution of the Tibetan plateau interpret observed east–west thinning of the upper crust to be the result of either increased potential energy of elevated crust or geodynamic processes that may be unrelated to plateau formation. A key piece of information needed ...
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Electronic Resource
    Electronic Resource
    Springer
    International journal of earth sciences 79 (1990), S. 725-739 
    ISSN: 1437-3262
    Source: Springer Online Journal Archives 1860-2000
    Topics: Geosciences
    Description / Table of Contents: Abstract The Arosa Zone, part of the main Alpine suture zone between the Austroalpine and the Penninic realms, forms a heterogeneous unit composed of rocks of oceanic and continental origin. It exhibits mélange character due to minor sedimentary mixing and local penetrative tectonic deformation during Cretaceous and Early Tertiary imbrication. Competent blocks of both Austroalpine and Penninic origin, covering up to 2.5 km2, are embedded in incompetent serpentinitic or shaly-calcareous matrix. On a mesoscale, disrupted strata occur in and adjacent to thrust and shear zones. Contrasting competence between blocks and matrix partitioned deformation into brittle and ductile processes. Extension veins and shear fractures affected the competent strata whereas the matrix developed a penetrative foliation during ductile flow and accommodated high strain. Flow was mainly non-coaxial in the matrix, and coaxial extension prevailed in the blocks. In a regional tectonic setting, we define the Arosa Zone as the tectonostratigraphic unit sandwiched between the Austroalpine and Penninic units. It forms a narrow and highly imbricated zone containing both South Penninic ophiolitic and sedimentary rocks as well as blocks and slices of Austroalpine origin.
    Abstract: Résumé La Zone d'Arosa, partie de la zone de suture alpine entre l'Austro-alpin et le Pennique, forme une unité hétérogène composée de roches d'origines océanique et continentale. Elle présente le caractère d'un mélange qui résulte d'un brassage sédimentaire mineur, et de déformations tectoniques, locales mais pénétratives, au cours du Crétacé et du Tertiaire ancien. Des blocs compétents de l'Austro-alpin et du Pennique qui couvrent jusqu'à 2.5 km2, sont enrobés dans une matrice incompétente serpentineuse ou argilo-calcaire. A moyenne échelle, les couches disloquées se rencontrent dans les zones charriées et cisaillées, ou y sont adjacentes. La différence de compétence entre les blocs et la matrice répartit la déformation en processus cassants et ductiles. Les roches compétentes montrent des fentes d'extension et des fractures de cisaillement, alors que dans la matrice, sous l'action d'un flux ductile et d'une intensité de contrainte élevée, se développe une foliation pénétrative. La déformation fut principalement non coaxiale dans la matrice et coaxiale dans les blocs d'extension. Dans un cadre tectonique régional, nous définissons la Zone d'Arosa comme une unité tectonostratigraphique prise entre l'Austro-alpin et le Pennique. Elle constitue une zone étroite et fortement imbriquée composée aussi bien de roches ophiolitiques du Sud-Pennique et de roches sédimentaires, que de blocs et d'écaillés de l'Austro-alpin.
    Notes: Zusammenfassung Die Arosa Zone ist Teil der Alpinen Suturzone zwischen Ostalpin und Pennimkum und bildet eine lithologisch heterogene Einheit aus kontinentalen und ozeanischen Gesteinen. Sie zeigt den Charakter einer Melange, die aus, untergeordnet, sedimentärer Durchmischung und lokaler, aber penetrativer tektonischer Deformation während kretazisch und alttertiärer Tektonik resultiert. Kompetente Blöcke ostalpiner und penninischer Herkunft, die bis zu 3 km im Streichen verfolgbar sind, schwimmen in einer inkompetenten serpentinitischen oder tonig-karbonatischen Matrix. Im Mesobereich treten zerbrochene Gesteinsabfolgen in oder direkt an Überschiebungs- und Scherzonen auf. Unterschiedliche Kompetenz zwischen Blöcken und Matrix teilt die Deformation in spröde und duktile Prozesse auf. Die kompetenten Gesteine zeigen Extensionsspalten und Scherbrüche, in der Matrix entwickelte sich durch duktiles Fließen eine penetrative Schieferung bei hoher Strainintensität. Die Deformation in der Matrix war hauptsächlich nicht-koaxial, koaxiale Extension herrschte in den Blöcken. Im regionalen tektonischen Rahmen definieren wir die Arosa Zone als tektonostratigraphische Einheit zwischen Ostalpin und Penninikum. Sie bildet eine schmale, stark imbrikierte Zone die, aus südpenninischen ophiolithischen und sedimentären Gesteinen, sowie aus Blöcken und Spänen ostalpiner Herkunft aufgebaut wird.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2009-12-28
    Description: New structural, geochronological, and petrological data highlight which crustal sections of the North American-Caribbean Plate boundary in Guatemala and Honduras accommodated the large-scale sinistral offset. We develop the chronological and kinematic framework for these interactions and test for Palaeozoic to Recent geological correlations among the Maya Block, the Chortis Block, and the terranes of southern Mexico and the northern Caribbean. Our principal findings relate to how the North American-Caribbean Plate boundary partitioned deformation; whereas the southern Maya Block and the southern Chortis Block record the Late Cretaceous-Early Cenozoic collision and eastward sinistral translation of the Greater Antilles arc, the northern Chortis Block preserves evidence for northward stepping of the plate boundary with the translation of this block to its present position since the Late Eocene. Collision and translation are recorded in the ophiolite and subduction-accretion complex (North El Tambor complex), the continental margin (Rabinal and Chuacus complexes), and the Laramide foreland fold-thrust belt of the Maya Block as well as the overriding Greater Antilles arc complex. The Las Ovejas complex of the northern Chortis Block contains a significant part of the history of the eastward migration of the Chortis Block; it constitutes the southern part of the arc that facilitated the breakaway of the Chortis Block from the Xolapa complex of southern Mexico. While the Late Cretaceous collision is spectacularly sinistral transpressional, the Eocene-Recent translation of the Chortis Block is by sinistral wrenching with transtensional and transpressional episodes. Our reconstruction of the Late Mesozoic-Cenozoic evolution of the North American-Caribbean Plate boundary identified Proterozoic to Mesozoic connections among the southern Maya Block, the Chortis Block, and the terranes of southern Mexico: (i) in the Early-Middle Palaeozoic, the Acatlan complex of the southern Mexican Mixteca terrane, the Rabinal complex of the southern Maya Block, the Chuacus complex, and the Chortis Block were part of the Taconic-Acadian orogen along the northern margin of South America; (ii) after final amalgamation of Pangaea, an arc developed along its western margin, causing magmatism and regional amphibolite-facies metamorphism in southern Mexico, the Maya Block (including Rabinal complex), the Chuacus complex and the Chortis Block. The separation of North and South America also rifted the Chortis Block from southern Mexico. Rifting ultimately resulted in the formation of the Late Jurassic-Early Cretaceous oceanic crust of the South El Tambor complex; rifting and spreading terminated before the Hauterivian (c. 135 Ma). Remnants of the southwestern Mexican Guerrero complex, which also rifted from southern Mexico, remain in the Chortis Block (Sanarate complex); these complexes share Jurassic metamorphism. The South El Tambor subduction-accretion complex was emplaced onto the Chortis Block probably in the late Early Cretaceous and the Chortis Block collided with southern Mexico. Related arc magmatism and high-T/low-P metamorphism (Taxco-Viejo-Xolapa arc) of the Mixteca terrane spans all of southern Mexico. The Chortis Block shows continuous Early Cretaceous-Recent arc magmatism.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 353: 1-8.
    Publication Date: 2011-03-10
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2011-03-10
    Description: The youngest deformation structures on the Tibet Plateau are about NNE-trending grabens. We first combine remote-sensing structural and geomorphological studies with structural field observations and literature seismological data to study the Muga Purou rift that stretches at c. 86°E across central Tibet and highlight a complex deformation field. ENE-striking faults are dominated by sinistral strike–slip motion; NNE-striking faults have normal kinematics and outline a right-stepping en-echelon array of grabens, also suggesting sinistral strike–slip; along NW-striking fault sets, the arrangement of grabens may indicate a dextral strike–slip component. Thus, in central Tibet, rifts comprise mostly grabens connected to strike–slip fault zones or are arranged en-echelon to accommodate sinistral wrenching; overall strain geometry is constrictional, in which NNE–SSW and subvertical shortening is balanced by WNW–ESE extension. The overwhelmingly shallow earthquakes only locally outline active faults; clusters seem to trace linkage or propagation zones of know structures. The earthquake pattern, the neotectonic mapping, and the local fault–slip analyses emphasize a distributed, heterogeneous pattern of deformation within a developing regional structure and indicate that strain concentration is weak in the uppermost crust of central Tibet. Thus, the geometry of neotectonic deformation is different from that in southern Tibet. Next, we use structural and palaeomagnetic data along the Zagaya section of southern central Tibet to outline significant block rotation and sinistral strike–slip SE of the Muga Purou rift. Our analysis supports earlier interpretations of reactivation of the Bangong–Nujiang suture as a neotectonic strike–slip belt. Then, we review the existing and provide new geochronology on the onset of neotectonic deformation in Tibet and suggest that the currently active neotectonic deformation started c. 5 Ma ago. It was preceded by c. north–south shortening and c. east–west lengthening within a regime that comprises strike–slip and low-angle normal faults; these were active at c. 18–7 Ma. The c. east-striking, sinistral Damxung shear zone and the c. NE-trending Nyainqentanghla sinistral-normal detachment allow speculations about the nature of this deformation: the ductile, low-angle detachments may be part of or connect to a mid-crustal décollement layer in which the strike–slip zones root; they may be unrelated to crustal extension. Finally, we propose a kinematic model that traces neotectonic particle flow across Tibet and speculate on the origin of structural differences in southern and central Tibet. Particles accelerate and move eastwards from western Tibet. Flow lines first diverge as the plateau is widening. At c. 92°E, the flow lines start to converge and particles accelerate; this area is characterized by the appearance of the major though-going strike–slip faults of eastern-central Tibet. The flow lines turn southeastward and converge most between the Assam–Namche Barwa and Gongha syntaxes; here the particles reach their highest velocity. The flow lines diverge south of the cord between the syntaxes. This neotectonic kinematic pattern correlates well with the decade-long velocity field derived from GPS-geodesy. The difference between the structural geometries of the rifts in central and southern Tibet may be an effect of the basal shear associated with the subduction of the Indian plate. The boundary between the nearly pure extensional province of the southern Tibet and the strike–slip and normal faulting one of central Tibet runs obliquely across the Lhasa block. Published P-wave tomographic imaging showed that the distance over which Indian lithosphere has thrust under Tibet decreases from west to east; this suggests that the distinct spatial variation in the mantle structure along the collision zone is responsible for the surface distribution of rift structures in Tibet.Supplementary material: Containing supporting data is available at http://www.geolsoc.org.uk/SUP18446.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    facet.materialart.
    Unknown
    In:  Geological Society Special Publication 226: 157-175.
    Publication Date: 2007-10-08
    Description: High-pressure metamorphism and ophiolite emplacement (Songshugou ophiolite) attended suturing of the Yangtze craton to Rodinia during the c. 1.0 Ga Grenvillian orogeny. The Qinling microcontinent then rifted from the Yangtze craton at c. 750 Ma. The Erlangping intraoceanic arc formed in the Early Ordovician, was emplaced onto the Qinling microcontinent in the Ordovician-Silurian, and then both units were accreted to the Sino-Korea craton before being stitched together by the c.400 Ma Andean-style Qinling arc. Subsequent subduction beneath the Qinling-Sino-Korean plate created a Devonian-Triassic accretionary wedge that includes eclogites, and formed a coeval volcano-plutonic arc that stretches from the Longmen Shan to Korea. In the Late Permian-Early Triassic, the northern edge of the South China Block was subducted to 〉150 km depth, creating the diamond- and coesite-bearing eclogites of the Dabie and Sulu areas. Exhumation from the mantle by lithosphere-scale extension occurred between 245 and 195 Ma during clockwise rotation of the craton. The Yangtze-Sino-Korea suture locally lies tens of km north of the exhumed UHP-HP part of the South China Block, implying perhaps that the very tip of the South China Block was not subducted, or that the UHP-HP rocks rose as a wedge that peeled the upper crust of the unsubducted South China Block from the lower crust. The Tan-Lu fault is an Early Cretaceous to Cenozoic feature. The apparent offset of the Dabie and Sulu UHP terranes by the Tan-Lu fault is a result of this Cretaceous to Cenozoic faulting combined with post-collisional extension north of Dabie.
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-01-14
    Print ISSN: 0031-9007
    Electronic ISSN: 1079-7114
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...