ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2007-03-01
    Print ISSN: 1070-664X
    Electronic ISSN: 1089-7674
    Topics: Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Launch Vehicles and Launch Operations
    Type: IPBEWG at Caltech; Aug 22, 2011 - Aug 24, 2011; Pasadena, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-08-10
    Description: Given their smaller budgets, but higher allowed risk posture, technology demonstration missions face different Verification and Validation (V&V) challenges than typical NASA missions. Despite these challenges, the Low Density Supersonic Decelerator (LDSD) project, managed by NASAs Jet Propulsion Laboratory (JPL), has been extremely successful in testing new supersonic atmospheric decelerator technologies. A contribution to the projects success is the unique V&V program that emphasized efficiency and flexibility. This paper will provide an overview of LDSD test objectives, Supersonic Flight Dynamics Tests (SFDT) performed so far, unique requirements structure and V&V processes implemented. The paper will focus on the V&V of the SFDT test architecture. Furthermore, lessons learned will also be presented at the end of the paper to aid future technology demonstration projects.
    Keywords: Spacecraft Design, Testing and Performance
    Type: JPL-CL-16-0035 , IEEE Aerospace Conference; Mar 05, 2016 - Mar 12, 2016; Big Sky, MT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-13
    Description: Near Earth Objects (NEOs) and other primitive bodies are exciting targets for exploration. Not only do they provide clues to the early formation of the universe, but they also are potential resources for manned exploration as well as provide information about potential Earth hazards. As a step toward exploration outside Earth's sphere of influence, NASA is considering manned exploration to Near Earth Asteroids (NEAs), however hazard characterization of a target is important before embarking on such an undertaking. A small Solar Electric Propulsion (SEP) spacecraft would be ideally suited for this type of mission due to the high delta-V requirements, variety of potential targets and locations, and the solar energy available in the inner solar system.Spacecraft and mission trades have been performed to develop a robust spacecraft design that utilizes low cost, off-the-shelf components that could accommodate a suite of different scientific payloads for NEO characterization. Mission concepts such as multiple spacecraft each rendezvousing with different NEOs, single spacecraft rendezvousing with separate NEOs, NEO landers, as well as other inner solar system applications (Mars telecom orbiter) have been evaluated. Secondary launch opportunities using the Expendable Secondary Payload Adapter (ESPA) Grande launch adapter with unconstrained launch dates have also been examined.
    Keywords: Spacecraft Propulsion and Power
    Type: IAA Low-Cost Planetary Missions Conference; Jun 21, 2011; Laurel, MD; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: The Nuclear Electric Xenon Ion System (NEXIS) research and development activity within NASA's Project Prometheus, was one of three proposals selected by NASA to develop thruster technologies for long life, high power, high specific impulse nuclear electric propulsion systems that would enable more robust and ambitious science exploration missions to the outer solar system. NEXIS technology represents a dramatic improvement in the state-of-the-art for ion propulsion and is designed to achieve propellant throughput capabilities 〉= 2000 kg and efficiencies 〉= 78% while increasing the thruster power to 〉= 20 kW and specific impulse to 〉= 6000 s. The NEXIS technology uses erosion resistant carbon-carbon grids, a graphite keeper, a new reservoir hollow cathode, a 65-cm diameter chamber masked to produce a 57-cm diameter ion beam, and a shared neutralizer architecture to achieve these goals. The accomplishments of the NEXIS activity so far include performance testing of a laboratory model thruster, successful completion of a proof of concept reservoir cathode 2000 hour wear test, structural and thermal analysis of a completed development model thruster design, fabrication of most of the development model piece parts, and the nearly complete vacuum facility modifications to allow long duration wear testing of high power ion thrusters.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2004-3450 , 40th AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 11, 2004 - Jul 14, 2004; Fort Lauderdale, FL; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: Following completion of the 5,600 hr qualification life test of the BPT-4000 4.5 kW Hall Thruster Propulsion System, NASA and Aerojet have undertaken efforts to extend the qualified operating range and lifetime of the thruster to support a wider range of NASA missions. The system was originally designed for orbit raising and stationkeeping applications on military and commercial geostationary satellites. As such, it was designed to operate over a range of power levels from 3 to 4.5 kW. Studies of robotic exploration applications have shown that the cost savings provided by utilizing commercial technology that can operate over a wider range of power levels provides significant mission benefits. The testing reported on here shows that the 4.5 kW thruster as designed has the capability to operate efficiently down to power levels as low as 1 kW. At the time of writing, the BPT-4000 qualification thruster and cathode have accumulated over 400 hr of operation between 1 to 2 kW with an additional 600 hr currently planned. The thruster has demonstrated no issues with longer duration operation at low power.
    Keywords: Spacecraft Propulsion and Power
    Type: NASA/TM-2006-214453 , AIAA Paper 2006-5263 , E-15717 , 42nd AIAA Joint Propulsion Conference; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The proposed Prometheus 1 mission is an ambitious plan to orbit and explore the Jovian moons of Callisto, Ganymede, and Europa. Such an ambitious mission is enabled by the first interplanetary nuclear electric propulsion (EP) system.
    Keywords: Spacecraft Propulsion and Power
    Type: Joint Propulsion Conference; Jul 11, 2005 - Jul 13, 2005; Tucson, AZ; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: For future applications to precision formation flying missions, NASA's New Millennium Program is scheduled to test colloid micro-Newton thrusters (CMNTs) on the ST7 technology demonstration mission. These CMNTs are part of a disturbance reduction system (DRS) on the ESA SMART-2 Spacecraft or LISA Pathfinder. The goal of the ST7 DRS is to demonstrate technologies necessary to meet the nanometer precision positioning control requirements of the LISA mission. In order to achieve these goals, the CMNTs are required to demonstrate a thrust resolution of less than 0.1 micro-N and a thrust noise of less than 0.1 micro-N/[square root]Hz for thrust levels between 5 and 30 micro-N. Developed by Busek Co. with support from JPL in testing an design, the CMNT has been developed over the last four years into a flight-ready microthrust system. The development, validation testing, and flight unit production of the CMNTs are described. Development tests and analysis include preliminary wear tests, propellant loading process verification, flow testing, and performance verification. Validation and flight unit verification includes thermal and structural analysis, life testing, thermal and dynamic load testing, and performance verification. Final delivery of the units is planned in 2007 with and planned launch and flight demonstration 2009.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2006-4320 , 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 09, 2006 - Jul 12, 2006; Sacramento, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Two flight-qualified clusters of four Colloid Micro-Newton Thruster (CMNT) systems have been delivered to the Jet Propulsion Laboratory (JPL). The clusters will provide precise spacecraft control for the drag-free technology demonstration mission, Space Technology 7 (ST7). The ST7 mission is sponsored by the NASA New Millennium Program and will demonstrate precision formation flying technologies for future missions such as the Laser Interferometer Space Antenna (LISA) mission. The ST7 disturbance reduction system (DRS) will be on the ESA LISA Pathfinder spacecraft using the European gravitational reference sensor (GRS) as part of the ESA LISA Technology Package (LTP). Developed by Busek Co. Inc., with support from JPL in design and testing, the CMNT has been developed over the last six years into a flight-ready and flight-qualified microthruster system, the first of its kind. Recent flight-unit qualification tests have included vibration and thermal vacuum environmental testing, as well as performance verification and acceptance tests. All tests have been completed successfully prior to delivery to JPL. Delivery of the first flight unit occurred in February of 2008 with the second unit following in May of 2008. Since arrival at JPL, the units have successfully passed through mass distribution, magnetic, and EMI/EMC measurements and tests as part of the integration and test (I&T) activities including the integrated avionics unit (IAU). Flight software sequences have been tested and validated with the full flight DRS instrument successfully to the extent possible in ground testing, including full functional and 72 hour autonomous operations tests. Delivery of the cluster assemblies along with the IAU to ESA for integration into the LISA Pathfinder spacecraft is planned for the summer of 2008 with a planned launch and flight demonstration in late 2010.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA Paper 2008-4826 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 21, 2008 - Jul 23, 2008; Hartford, CT; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: Near-Earth Objects (NEOs) are exciting targets for exploration; they are relatively easy to reach but relatively little is known about them. With solar electric propulsion, a vast number of interesting NEOs can be reached within a few years and with extensive flexibility in launch date. An additional advantage of electric propulsion for these missions is that a spacecraft can be small, enabling a fleet of explorers launched on a single vehicle or as secondary payloads. Commercial, flight-proven Hall thruster systems have great appeal based on their performance and low cost risk, but one issue with these systems is that the power processing units (PPUs) are designed for regulated spacecraft power architectures which are not attractive for small NEO missions. In this study we consider the integrated design of power and propulsion systems that utilize the capabilities of existing PPUs in an unregulated power architecture. Models for solar array and engine performance are combined with low-thrust trajectory analyses to bound spacecraft design parameters for a large class of NEO missions, then detailed array performance models are used to examine the array output voltage and current over a bounded mission set. Operational relationships between the power and electric propulsion systems are discussed, and it is shown that both the SPT-100 and BPT-4000 PPUs can perform missions over a solar range of 0.7 AU to 1.5 AU - encompassing NEOs, Venus, and Mars - within their operable input voltage ranges. A number of design trades to control the array voltage are available, including cell string layout, array offpointing during mission operations, and power draw by the Hall thruster system.
    Keywords: Spacecraft Propulsion and Power
    Type: AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit; Jul 31, 2011 - Aug 03, 2011; San Diego, CA; United States|Annual International Energy Conversion Engineering Conference; Jul 31, 2011 - Aug 03, 2011; San Diego, CA; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...