ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2020-08-18
    Description: The ongoing glacier shrinkage in the Alps requires frequent updates of glacier outlines to provide an accurate database for monitoring, modelling purposes (e.g. determination of run-off, mass balance, or future glacier extent), and other applications. With the launch of the first Sentinel-2 (S2) satellite in 2015, it became possible to create a consistent, Alpine-wide glacier inventory with an unprecedented spatial resolution of 10 m. The first S2 images from August 2015 already provided excellent mapping conditions for most glacierized regions in the Alps and were used as a base for the compilation of a new Alpine-wide glacier inventory in a collaborative team effort. In all countries, glacier outlines from the latest national inventories have been used as a guide to compile an update consistent with the respective previous interpretation. The automated mapping of clean glacier ice was straightforward using the band ratio method, but the numerous debris-covered glaciers required intense manual editing. Cloud cover over many glaciers in Italy required also including S2 scenes from 2016. The outline uncertainty was determined with digitizing of 14 glaciers several times by all participants. Topographic information for all glaciers was obtained from the ALOS AW3D30 digital elevation model (DEM). Overall, we derived a total glacier area of 1806±60 km2 when considering 4395 glaciers 〉0.01 km2. This is 14 % (−1.2 % a−1) less than the 2100 km2 derived from Landsat in 2003 and indicates an unabated continuation of glacier shrinkage in the Alps since the mid-1980s. It is a lower-bound estimate, as due to the higher spatial resolution of S2 many small glaciers were additionally mapped or increased in size compared to 2003. Median elevations peak around 3000 m a.s.l., with a high variability that depends on location and aspect. The uncertainty assessment revealed locally strong differences in interpretation of debris-covered glaciers, resulting in limitations for change assessment when using glacier extents digitized by different analysts. The inventory is available at https://doi.org/10.1594/PANGAEA.909133 (Paul et al., 2019).
    Print ISSN: 1866-3508
    Electronic ISSN: 1866-3516
    Topics: Geosciences
    Published by Copernicus
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    PANGAEA
    In:  Supplement to: Paul, Frank; Rastner, Philipp; Azzoni, Roberto Sergio; Fugazza, Davide; Le Bris, Raymond; Nemec, Johanna; Rabatel, Antoine; Ramusovic, Mélanie; Schwaizer, Gabriele; Smiraglia, Claudio (in review): Glacier shrinkage in the Alps continues unabated as revealed by a new glacier inventory from Sentinel-2. Earth System Science Data, https://doi.org/10.5194/essd-2019-213
    Publication Date: 2024-02-22
    Description: The on-going glacier shrinkage in the Alps requires frequent updates of glacier outlines to provide an accurate database for monitoring or modeling purposes (e.g. determination of run-off, mass balance, or future glacier extent) and other applications. With the launch of the first Sentinel-2 (S2) satellite in 2015, it became possible to create a consistent, Alpine-wide glacier inventory with an unprecedented spatial resolution of 10 m. Fortunately, already the first S2 images acquired in August 2015 provided excellent mapping conditions for most of the glacierised regions in the Alps. We have used this opportunity to compile a new Alpine-wide glacier inventory in a collaborative team effort. In all countries, glacier outlines from the latest national inventories have been used as a guide to compile a consistent update. However, cloud cover over many glaciers in Italy required including also S2 scenes from 2016. Whereas the automated mapping of clean glacier ice was straightforward using the band ratio method, the numerous debris-covered glaciers required intense manual editing. The uncertainty in the outlines was determined with multiple digitising of 14 glaciers by all participants. Topographic information for all glaciers was derived from the ALOS AW3D30 DEM. Overall, we derived a total glacier area of 1806 ±60 km² when considering 4394 glaciers 〉0.01 km². This is 14% (-1.2%/a) less than the 2100 km² derived from Landsat scenes acquired in 2003 and indicating an unabated continuation of glacier shrinkage in the Alps since the mid-1980s. Due to the higher spatial resolution of S2 many small glaciers were additionally mapped in the new inventory or increased in size compared to 2003. An artificial reduction to the former extents would thus result in an even higher overall area loss. Still, the uncertainty assessment revealed locally considerable differences in interpretation of debris-covered glaciers, resulting in limitations for change assessment when using glacier extents digitised by different analysts.
    Keywords: AlpineRegion; Alps; change assessment; Glacier inventory; Sentinel-2; topography; uncerainty
    Type: Dataset
    Format: application/zip, 7.5 MBytes
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...