ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2012-10-01
    Print ISSN: 0261-3069
    Electronic ISSN: 1873-4197
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: The aerodynamic-structural-control design of a forward-swept composite wing for a high subsonic transport aircraft is considered. The structural analysis is based on a finite-element method. The aerodynamic calculations are based on a vortex-lattice method, and the control calculations are based on an output feedback control. The wing is designed for minimum weight subject to structural, performance/aerodynamic and control constraints. Efficient methods are used to calculate the control-deflection and control-effectiveness sensitivities which appear as second-order derivatives in the control constraint equations. To suppress the aeroelastic divergence of the forward-swept wing, and to reduce the gross weight of the design aircraft, two separate cases are studied: (1) combined application of aeroelastic tailoring and active controls; and (2) aeroelastic tailoring alone. The results of this study indicated that, for this particular example, aeroelastic tailoring is sufficient for suppressing the aeroelastic divergence, and the use of active controls was not necessary.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 92-4694 , In: AIAA(USAF)NASA/OAI Symposium on Multidisciplinary Analysis and Optimization, 4th, Cleveland, OH, Sept. 21-23, 1992, Technical Papers. Pt. 1 (A93-20301 06-66); p. 52-62.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-06-28
    Description: The integrated aerodynamic-structural design of a subsonic transport wing for minimum weight subject to required range is formulated and solved. The problem requires large computational resources, and two methods are used to alleviate the computational burden. First, a modular sensitivity method that permits the usage of black-box disciplinary software packages, is used to reduce the cost of sensitivity derivatives. In particular, it is shown that derivatives of the aeroelastic response and divergence speed can be calculated without the costly computation of derivatives of aerodynamic influence coefficient and structural stiffness matrices. A sequential approximate optimization is used to further reduce computational cost. The optimization procedure is shown to require a relatively small number of analysis and sensitivity calculations.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: AIAA PAPER 89-2129
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-11
    Description: This report presents an overview of a Mobile Lunar Habitat (MLH) structural design consisting of advanced composite materials. The habitat design is derived from the cylindrical-shaped U.S. Lab module aboard the International Space Station (ISS) and includes two lateral ports and a hatch at each end that geometrically match those of the ISS Nodes. Thus, several MLH units can be connected together to form a larger lunar outpost of various architectures. For enhanced mobility over the lunar terrain, the MLH uses six articulated insect-like robotic, retractable legs enabling the habitat to .t aboard a launch vehicle. The carbon-composite shell is sandwiched between two layers of hydrogen-rich polyethylene for enhanced radiation shielding. The pressure vessel is covered by modular double-wall panels for meteoroid impact shielding supported by externally mounted stiffeners. The habitat s structure is an assembly of multiple parts manufactured separately and bonded together. Based on the geometric complexity of a part and its material system, an appropriate fabrication process is proposed.
    Keywords: Spacecraft Design, Testing and Performance
    Type: NASA/CR-2005-213845 , M-1135
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-12
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Journal of Aircraft (ISSN 0021-8669); 27; 1050-105
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...