ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Keywords: Plant physiology. ; Stress (Physiology). ; Plants. ; Plant molecular biology. ; Botanical chemistry. ; Plant biotechnology. ; Plant Physiology. ; Plant Stress Responses. ; Plant Molecular Biology. ; Plant Biochemistry. ; Plant Biotechnology.
    Description / Table of Contents: Heat stress in wheat: adaptation strategies -- Molecular markers mediated heat stress tolerance in crop plants -- Physiology of crop yield under heat stress -- Physiological traits for improving heat stress tolerance in plants -- Understanding the mechanism of high temperature stress effect and tolerance in wheat -- Reactive Oxygen Species – Friend or Foe -- CDPKs based signalling network: Protecting the wheat from heat -- Heat Shock Proteins: Catalytic Chaperones involved in Modulating Thermotolerance in Plants -- Starch metabolism under heat stress -- Heat stress and grain quality -- Omics tools and techniques for study of defense mechanism in plants -- Induced mutagenesis for high temperature tolerance in crop plants -- CRISPR/Cas-based genome editing to enhance heat stress tolerance in crop plants -- Genomics-enabled breeding for heat and drought stress tolerance in crop plants.
    Abstract: This book collates various aspects of stress tolerance in crop plants. It primarily focuses on the heat and temperature related stress, starting from the severity of the problem on quantity and quality of yield under the threat of global climate change. The content also explores other mechanistic dimensions such as physiochemical and molecular mechanism underlying thermotolerance, signaling mechanism under heat stress, role of heat shock proteins in modulating thermotolerance, omics approach for development of climate smart-crop. Chapters discuss different approaches used in the past to develop heat stress tolerant crop plants, list of developed thermotolerant agriculturally important crop plants, redox homeostasis under heat stress, nutrient uptake and use efficiency in plants under heat stress and much more. The book is a useful compilation for researchers working in the area of abiotic stress tolerance in crop plants, as well as for students of plant physiology and agricultural sciences.
    Type of Medium: Online Resource
    Pages: XIII, 321 p. 1 illus. , online resource.
    Edition: 1st ed. 2022.
    ISBN: 9789811938009
    DDC: 571.2
    Language: English
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2021-08-10
    Description: Advances in proteome research have opened the gateway to understanding numerous metabolic pathways and fundamental mechanisms involved in abiotic stress tolerance. In the present study, the antioxidant capacity of four tomato genotypes i.e., Kashi Amrit, Kashi Anupam, EC-317-6-1, and WIR-4360 was determined under drought stress to ascertain the scavenging potential for reactive oxygen species (ROS). A significant increase in the superoxide dismutase (SOD), Ascorbate peroxidase (APX), and catalase (CAT) activities in all the four genotypes under drought stress was observed, which seemed to be associated with a protective role against ROS (p 〈 0.001). Based on the antioxidant enzyme activities, a proteomic approach was applied to study differential protein expression in two selected genotypes from different species i.e., EC-317-6-1 (Solanum pimpinellifolium) and Kashi Amrit (Solanum lycopersicum) grown under irrigated, drought, and re-watering conditions. To reveal the protein network regulated under these conditions, two-dimensional gel electrophoresis was employed to identify and quantify the number of proteins in drought-sensitive (Kashi Amrit) and tolerant (EC-317-6-1) genotypes. Matrix-assisted laser desorption/ionization-time of flight analysis (MALDI-TOF) revealed a total of 453 spots after fine-tuning factors i.e., smoothness, saliency, and minimum area that responded to drought. Out of 453 total spots, 93 spots were identified in Kashi Amrit and 154 in EC-317-6-1 under irrigated conditions, whereas 4 spots were identified in Kashi Amrit and 77 spots in EC-317-6-1 under drought conditions. Furthermore, differentially expressed proteins were distinguished according to the fold change of their expression. Information provided in this report will be useful for the selection of proteins or genes in analyzing or improving drought tolerance in tomato cultivars. These findings may assist in the construction of a complete proteome database encompassing various divergent species which could be a valuable source for the improvement of crops under drought-stress conditions in the future.
    Electronic ISSN: 2073-4433
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2021-10-25
    Description: Plant pathology has been revolutionized by the emergence and intervention of next-generation sequencing technologies (NGS) which provide a fast, cost-effective, and reliable diagnostic for any class of pathogens. NGS has made tremendous advancements in the area of research and diagnostics of plant infecting viromes and has bridged plant virology with other advanced research fields like genome editing technologies. NGS in a broader perspective holds the potential for plant health improvement by diagnosing and mitigating the new or unusual symptoms caused by novel/unidentified viruses. CRISPR-based genome editing technologies can enable rapid engineering of efficient viral/viroid resistance by directly targeting specific nucleotide sites of plant viruses and viroids. Critical genes such as eIf (iso) 4E or eIF4E have been targeted via the CRISPR platform to produce plants resistant to single-stranded RNA (ssRNA) viruses. CRISPR/Cas-based multi-target DNA or RNA tests can be used for rapid and accurate diagnostic assays for plant viruses and viroids. Integrating NGS with CRISPR-based genome editing technologies may lead to a paradigm shift in combating deadly disease-causing plant viruses/viroids at the genomic level. Furthermore, the newly discovered CRISPR/Cas13 system has unprecedented potential in plant viroid diagnostics and interference. In this review, we have highlighted the application and importance of sequencing technologies on covering the viral genomes for precise modulations. This review also provides a snapshot vision of emerging developments in NGS technologies for the characterization of plant viruses and their potential utilities, advantages, and limitations in plant viral diagnostics. Furthermore, some of the notable advances like novel virus-inducible CRISPR/Cas9 system that confers virus resistance with no off-target effects have been discussed.
    Electronic ISSN: 1664-8021
    Topics: Biology , Medicine
    Published by Frontiers Media
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...