ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Biology and fertility of soils 19 (1995), S. 362-368 
    ISSN: 1432-0789
    Keywords: Microbial biomass ; Aluminium toxicity ; Acid stress ; Microcalorimetry ; Microbial activity ; Stress parameter
    Source: Springer Online Journal Archives 1860-2000
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Notes: Abstract Microbial biomass C and activity were determined in six forest soils along a gradient in physical and chemical climate in Europe. Both parameters were measured microcalorimetrically. The upper 22 cm of the soils were sampled in undisturbed columns (24 cm deep). Measurements were made in homogenized samples of the different surface organic horizons (Ol, Of, Oh) and the mineral horizons (Ah, Aeh, Bv) down to 22 cm. On a mass basis values for both the biomass and the activity showed an exponential decrease with depth in all soils. Expressed on a volume basis these relationships varied with soil pH. in the strongly acidified soils most of the microbial biomass and activity was located in the forest floor. In less acidified soils both parameters were highest in the mineral soil. Further relationships between biomass and activity and between soil chemical properties showed significant positive correlations with exchangeable Ca2+, Mg2+, Ca/Al and negative correlations with Al3+. There were no significant correlations with exchangeable cations in less acidified soils. It was calculated that the microbial biomass is more affected by soil chemistry than activity. The caloric quotient (qW) is a good parameter for determining the ecophysiological state of microorganisms in acidified soils.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    ISSN: 1573-515X
    Keywords: acidification ; aluminium ; Arrhenius’ law ; calcium ; cation leaching ; climate ; ion equilibrium ; forest soil ; N-cycle ; N-deposition ; nitrification ; temperature
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Increased emissions of nitrogen compounds have led to atmosphericdeposition to forest soils exceeding critical loads of N overlarge parts of Europe. To determine whether the chemistry offorest soils responds to changes in throughfall chemistry, intactsoil columns were reciprocally transplanted between sites, withdifferent physical conditions, across a gradient of N and Sdeposition in Europe. The transfer of a single soil to the various sites affected itsnet nitrification. This was not simply due to the nitrificationof different levels of N deposition but was explained bydifferences in physical climates which influenced mineralizationrates. Variation in the amount of net nitrification between soiltypes at a specific site were explained largely by soil pH. Within a site all soil types showed similar trends in netnitrification over time. Seasonal changes in net nitrificationcorresponds to oscillations in temperature but variable time lagshad to be introduced to explain the relationships. WithArrhenius‘ law it was possible to approximate gross nitrificationas a function of temperature. Gross nitrification equalled netnitrification after adaptation of the microbial community oftransplanted soils to the new conditions. Time lags, andunderestimates of gross nitrification in autumn, were assumed tobe the result of increased NH 4 + availability due either tochanges in the relative rates of gross and net N transformationsor to altered soil fauna-microbial interactions combined withimproved moisture conditions. Losses of NO 3 - were associated with Ca2+and Mg2+ in non-acidified soil types and with losses ofAl3+ in the acidified soils. For single soils the ionequilibrium equation of Gaines-Thomas provided a useful approximationof Al3+ concentrations in the soil solution as a functionof the concentration of Ca2+. The between site deviationsfrom this predicted equilibrium, which existed for single soils, couldbe explained by differences in throughfall chemistry which affectedthe total ionic strength of the soil solution. The approach of reciprocally transferring soil columnshighlighted the importance of throughfall chemistry, interactingwith the effect of changes in physical climate on forest soilacidification through internal proton production, in determiningsoil solution chemistry. A framework outlining the etiology offorest die-back induced by nitrogen saturation is proposed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1573-515X
    Keywords: transplanted soils ; ion budgets ; soil solution chemistry ; mineralization
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract Forest ecosystems are currently beingexposed to changes in chemical inputs and it issuggested that physical climate is also changing. Anovel approach has been used to study the effects ofionic inputs and climatic conditions on forest soilsby reciprocally exchanging lysimeters containingundisturbed soil columns beween four forest sites inEurope. The soil columns contained no living roots andsimulated a clear cut situation. The soils chosenrepresented different stages of acidification and weretaken from sites along a transect of increasingexposure to acidic and nitrogen pollution. The purposeof the study was to quantify the reactions of soilswhen transferred to different environments. Elementbalances were used as an aggregated indicator todescribe the reaction of the soil. The input of protonsin local throughfall increased along the transect from0.01 kmol ha-1 y-1H+ at the unpolluted site up to 1.10 kmolha-1 y-1 at the most pollutedsite. Our results show that soil acidification always resultedfrom a combination of acid deposition and biologicaltransformations of nitrogen through nitrification ofimported ammonium, mineralized N, or stored N. Thebalances indicate that between 54% and 91%of the soil acidification resulted from nitrificationprocesses which were driven by a complex reaction whenclimatic and pollution conditions were changedsimultaneously. The combined changes in atmosphicinputs and climatic conditions, as expected withglobal change, may have serious consequences for soilacidfication and long term organic matter turnover.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1573-515X
    Keywords: aluminium ; forest soils ; lysimeters ; nitrification ; nitrogen ; roots
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Geosciences
    Notes: Abstract The effects of enhanced (NH4 2SO4deposition on soil solution cation and anion concentrations and annualionic fluxes were followed using a standardised experimental protocolin six European coniferous forests with contrasting soil types, pollutioninputs and climate. Native soil cores containing a ceramic suction cupwere installed in the field, roofed and watered every two weeks withlocal throughfall or local throughfall with added(NH4)2SO4 at 75 kgNH4 +-N ha-1 a-1. Livingroot systems were established in half of the lysimeters.Untreated throughfall NH4 +-N deposition at thesites ranged from 3.7 to 29 kg ha-1 a-1Soil leachates were collected at two weekly intervalsover 12 months and analysed for volume, andconcentrations of major anions and cations. Increasesin soil solution NO3 - concentrations inresponse to N additions were observed after 4–9months at three sites, whilst one sandy soil with highC:N ratio failed to nitrify under any of thetreatments. Changes in NO3 - concentrationsin soil solution controlled soil solution cationconcentrations in the five nitrifying soils, withAl3+ being the dominant cation in the more acidsoils with low base saturation. The acidification responses ofthe soils to the (NH4 2SO4additions were primarily related to the ability of thesoils to nitrify the added NH4 +. pH and soiltexture seemed important in controllingNH4 + leaching in response to the treatments,with two less acidic, clay/clay loam sites showingalmost total retention of added NH4 +, whilstnearly 75% of the added N was leached asNH4 + at the acid sandy soils. The presenceof living roots significantly reduced soil solutionNO3 - and associated cation concentrations attwo of the six sites. The very different responses of the sixsoils to increased (NH4)2SO4deposition emphasise that the establishment of N critical loadsfor forest soils need to allow for differences in N storagecapacity and nitrification potential.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 1999-07-01
    Print ISSN: 0038-0717
    Electronic ISSN: 1879-3428
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1995-03-01
    Print ISSN: 0178-2762
    Electronic ISSN: 1432-0789
    Topics: Biology , Geosciences , Agriculture, Forestry, Horticulture, Fishery, Domestic Science, Nutrition
    Published by Springer
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...