ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 27 (2004), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Poplar (Populus × euroamericana) saplings were grown in the field to study the changes of photosynthesis and isoprene emission with leaf ontogeny in response to free air carbon dioxide enrichment (FACE) and soil nutrient availability. Plants growing in elevated [CO2] produced more leaves than those in ambient [CO2]. The rate of leaf expansion was measured by comparing leaves along the plant profile. Leaf expansion and nitrogen concentration per unit of leaf area was similar between nutrient treatment, and this led to similar source–sink functional balance. Consequently, soil nutrient availability did not cause downward acclimation of photosynthetic capacity in elevated [CO2] and did not affect isoprene synthesis. Photosynthesis assessed in growth [CO2] was higher in plants growing in elevated than in ambient [CO2]. After normalizing for the different number of leaves over the profile, maximal photosynthesis was reached and started to decline earlier in elevated than in ambient [CO2]. This may indicate a [CO2]-driven acceleration of leaf maturity and senescence. Isoprene emission was adversely affected by elevated [CO2]. When measured on the different leaves of the profile, isoprene peak emission was higher and was reached earlier in ambient than in elevated [CO2]. However, a larger number of leaves was emitting isoprene in plant growing in elevated [CO2]. When integrating over the plant profile, emissions in the two [CO2] levels were not different. Normalization as for photosynthesis showed that profiles of isoprene emission were remarkably similar in the two [CO2] levels, with peak emissions at the centre of the profile. Only the rate of increase of the emission of young leaves may have been faster in elevated than in ambient [CO2]. Our results indicate that elevated [CO2] may overall have a limited effect on isoprene emission from young seedlings and that plants generally regulate the emission to reach the maximum at the centre of the leaf profile, irrespective of the total leaf number. In comparison with leaf expansion and photosynthesis, isoprene showed marked and repeatable differences among leaves of the profile and may therefore be a useful trait to accurately monitor changes of leaf ontogeny as a consequence of elevated [CO2].
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd
    Plant, cell & environment 23 (2000), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Seasonal changes in tissue water relations of Erica arborea L., Myrtus communis L. and Juniperus communis L., grown in a Mediterranean environment, were analysed under field conditions over a 12 month period by comparing plants grown in the proximity of a natural CO2 spring (about 700 μmol mol−1 atmospheric CO2 concentration, [CO2]) with plants in ambient conditions. Tissue water relations varied in response to changes in water availability, but the seasonal course of tissue water relations parameters was also related to ontogeny. Tissue water relations of these co-occurring shrubs were not alike. Osmotic potentials and saturated mass/dry mass ratio were lowest during peak drought stress periods. Diurnal changes in osmotic potential at the point of turgor loss were least early in the season, maximal in mid-season, and decreased again in autumn. Turgor potentials decreased as drought progressed and were highest in late fall and mid-winter. Symplastic water fraction was highest in mid-spring for E. arborea and M. communis and decreased during the summer, while the opposite was observed for J. communis. Common to all species, under elevated [CO2], was an increase of turgor pressure, particularly during the summer months. Other parameters showed species-specific responses to long-term elevated [CO2]. In particular, exposure to elevated [CO2] increased osmotic potentials in E. arborea under drought, while the opposite was the case for J. communis. Site differences in predawn to midday shifts were not strong in any of the species. Differences in tissue water relations suggest that the coexistence of these shrubs in the same environment with similar water availability are partially based on differential water relations strategies and water use patterns. Regardless of the mechanisms, growth of these shrubs in elevated [CO2] may be either less, similarly or more affected by drought stress than plants in ambient [CO2] depending on the species and season.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Concurrent measurements of sap velocity (heat pulse) and ultrasound acoustic emission were performed on the trunks of mature Turkey oak (Quercus cerris) and sessile oak (Quercus petraea) trees. Plant water status was assessed by measuring leaf water potential, leaf conductance and transpiration. Wood density was estimated non-destructively on the trunk section of the plants by mobile computer tomography, which measures the attenuation of a collimated beam of radiation traversing the trunk in several directions, as the device rotates around the tree. Absorption is proportional to the density of the wood. As wood density is strictly correlated to water content, this non-invasive method allows the water content in the trunk section to be evaluated as well as mapped. Leaf water potential declined each morning until a minimum was reached at midday and recovered in the afternoon, lagging behind changes in transpiration rate. Good correspondence was found between the patterns of sap velocity and cavitation rate. A close correlation was demonstrated between wood density, water content and sap velocity. Sap now was always higher in Turkey oak than in sessile oak. Trunk signatures by computer tomography appeared to differentiate the two oak species, with the Turkey oak stem clearly more hydrated than the sessile oak; water storage reservoirs could play an important role in tree survival during extended periods of low soil water availability and in the relative distribution of tree species, especially in the context of global climate change. Late-wood conducting elements of oak species seem to play a significant role in water transport. The mobile computer tomograph was confirmed as a peerless tool for investigating stem water relations. Diurnal variations in the measured parameters under natural drought conditions and the differences between the two oak species are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Concurrent measurements of heat pulse velocity and ultrasound acoustic emission were performed on the trunks of adult Quercus petraea plants under different water stress conditions. On the trunk section of the plants the wood density was measured non-destructively using a mobile computer tomograph which measures the attenuation of a collimated beam of radiation which traverses the trunk. By scanning the trunk in different directions, it is possible to map wood density in the section. As wood density is strictly correlated with water content, this method allows evaluation of the water content in the trunk section and the water conditions in the different parts of the section. The computer-tomograph technique is non-invasive and is not influenced by climatic fluctuations. A close agreement was found between wood density and heat pulse velocity; the relationship between these two parameters and ultrasound acoustic emission is discussed. Trunks of sessile oak appear well suited as water storage reservoirs playing an important role in tree survival during extended periods of low soil water availability, especially in the context of global climatic change. Here the computer-tomograph methodology is described and suggestions arc made for further research development.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: It is estimated that more than 100 geothermal CO2 springs exist in central-western Italy. Eight springs were selected in which the atmospheric CO2 concentrations were consistently observed to be above the current atmospheric average of 354μmol mol-1. CO2 concentration measurements at some of the springs are reported. The springs are described, and their major topographic and vegetational features are reported. Preliminary observations made on natural vegetation growing around the gas vents are then illustrated. An azonal pattern of vegetation distribution occurs around every CO2 spring regardless of soil type and phytoclimatic areas. This is composed of pioneer populations of a Northern Eurasiatic species (Agrostis canina L.) which is often associated with Scirpus lacustris L. The potential of these sites for studying the long-term response of vegetation to rising atmospheric CO2 concentrations is discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Science Ltd, UK
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Variations in the water relations and stomatal response of Quercus ilex were analysed under field conditions by comparing trees at two locations in a Mediterranean environment during two consecutive summers (1993 and 1994). We used the heat-pulse velocity technique to estimate transpirational water use of trees during a 5 month period from June to November 1994. At the end of sap flow measurements, the trees were harvested, and the foliage and sapwood area measured. A distinct environmental gradient exists between the two sites with higher atmospheric CO2 concentrations in the proximity of a natural CO2 spring. Trees at the spring site have been growing for generations in elevated atmospheric CO2 concentrations. At both sites, maximum leaf conductance was related to predawn shoot water potential. The effects of water deficits on water relations and whole-plant transpiration during the summer drought were severe. Leaf conductance and water potential recovered after major rainfall in September to predrought values. Sap flow, leaf conductance and predawn water potential decreased in parallel with increases in hydraulic resistance, reaching a minimum in mid-summer. These relationships are in agreement with the hypothesis of the stomatal control of transpiration to prevent desiccation damage but also to avoid ‘runaway embolism’. Trees at the CO2 spring underwent less reduction in hydraulic resistance for a given value of predawn water potential. The decrease in leaf conductance caused by elevated CO2 was limited and tended to be less at high than at low atmospheric vapour pressure deficit. Mean (and diurnal) sap flux were consistently higher in the control site trees than in the CO2 spring trees. The degree of reduction in water use between the two sites varied among the summer periods. The control site trees had consistently higher sap flow at corresponding values of either sapwood cross-sectional area or foliage area. Larger trees displayed smaller differences than smaller trees, between the control and the CO2 spring trees. A strong association between foliage area and sapwood cross-sectional area was found in both the control and the CO2 spring trees, the latter supporting a smaller foliage area at the corresponding sapwood stem cross-sectional area. The specific leaf area (SLA) of the foliage was not influenced by site. The results are discussed in terms of the effects of elevated CO2 on plant water use at the organ and whole-tree scale.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 16 (1993), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Springs emitting carbon dioxide are frequent in Central Italy and provide a way of testing the response of plants to CO2 enrichment under natural conditions. Results of a CO2 enrichment experiment on soybean at a CO2 spring (Solfatara) are presented. The experimental site is characterized by significant anomalies in atmospheric CO2 concentration produced by a large number of vents emitting almost pure CO2 (93%) plus small amounts of hydrogen sulphide, methane, nitrogen and oxygen. Within the gas vent area, plants were grown at three sub-areas whose mean CO2 concentrations during daytime were 350,652 and 2370 μmol mol-1, respectively. Weekly harvests were made to measure biomass growth, leaf area and ontogenetic development. Biomass growth rate and seed yield were enhanced by elevated CO2. In particular, onto-morphogenetic development was affected by elevated CO2 with high levels of CO2 increasing the total number of main stem leaf nodes and the area of the main stem trifoliolate leaves. Biochemical analysis of plant tissue suggested that there was no effect of the small amounts of H2S on the response to CO2 enrichment. Non-protein sulphydryl compounds did not accumulate in leaf tissues and the overall capacity of leaf extracts to oxidize exogenously added NADH was not decreased. The limitations and advantages of experimenting with crop plants at elevated CO2 in the open and in the proximity of carbon dioxide springs are discussed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Lifelong exposure to elevated concentrations of atmospheric CO2 may enhance carbon assimilation of trees with unlimited rooting volume and consequently may reduce requirements for photoprotective pigments. In early summer the effects of elevated [CO2] on carboxylation and light utilization of mature Quercus pubescens trees growing under chronic [CO2] enrichment at two CO2 springs and control sites in Italy were examined. Net photosynthesis was enhanced by 36 to 77%. There was no evidence of photosynthetic downregulation early in the growing season when sink demand presumably was greatest. Specifically, maximum assimilation at saturating [CO2], electron transport capacity, and Rubisco content, activity and carboxylation capacity were not significantly different in trees growing at the CO2 springs and their respective control sites. Foliar biochemical content, leaf reflectance index of chlorophyll pigments (NDVI), and photochemical efficiency of PSII (ΔF/Fm′) also were not significantly affected by [CO2] enrichment except that starch content and ΔF/Fm′ tended to be higher at one spring (42 and 15%, respectively). Contrary to expectation, prolonged elevation of [CO2] did not reduce xanthophyll cycle pigment pools or alter mid-day values of leaf reflectance index of xanthophyll cycle pigments (PRI), despite the enhancement of carbon assimilation. However, both these pigments and PRI were well correlated with electron transport capacity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 14 (1991), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Abstract. The hypothesis that ray parenchyma cells are actively involved in the refilling of embolized xylem of Pinus sylvestris L. was tested by killing the ray parenchyma and comparing rehydration of killed stems with that of control material. Killing of ray parenchyma was achieved using hot water or sodium azide. In most experiments, the available water for refilling was at negative water potential. Experiments were done on three kinds of plant material: small branch segments, potted seedlings and small potted trees. In all experiments, there was no indication that the azide-killed xylem was slower to refill than the control material and it was concluded that the parenchyma has no role in the refilling process, which therefore must be purely physical or physicochemical. Stems treated with hot water did not refill; we suggest that this may be caused by high temperatures decreasing the water permeability of the tracheid wall. The refilling of small branch segments may be explained by surface tension forces (capillary action), which inside the tracheid lumen may lower the water potential down to -9.7kPa; this may be enough to draw in water from the available water that in experiment one was at -2kPa. In the case of seedlings or saplings, capillary action cannot explain refilling, because the xylem water potentials were always lower than those estimated from tracheid radii. Condensation of water during diurnal cycles of warming and cooling is also unlikely to contribute to refilling significantly. To account for refilling in these cases, it is supposed that the tracheid wall may be chemically active and able to lower the water potential below the value expected by capillarity.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Plant, cell & environment 21 (1998), S. 0 
    ISSN: 1365-3040
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Biology
    Notes: Two Italian CO2 springs allowed us to study the long-term effect of a 350–2600 μmol mol–1 increase in CO2 concentrations on the surface structures of leaves of Quercus ilex L. Carbon dioxide increased the quantity of cuticular waxes, above an apparent threshold of 750 μmol mol–1 CO2. Leaf wettability was not modified by CO2 concentrations. Reduction in stomatal frequency was observable up to 750 μmol mol–1 CO2, the slope being almost the same as that estimated for the increase in CO2 concentration from pre-industrial times to the present. At higher concentrations, CO2 seemed to exert no more impact on stomatal frequency.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...