ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 1989-08-25
    Description: Blue cone monochromacy is a rare X-linked disorder of color vision characterized by the absence of both red and green cone sensitivities. In 12 of 12 families carrying this trait, alterations are observed in the red and green visual pigment gene cluster. The alterations fall into two classes. One class arose from the wild type by a two-step pathway consisting of unequal homologous recombination and point mutation. The second class arose by nonhomologous deletion of genomic DNA adjacent to the red and green pigment gene cluster. These deletions define a 579-base pair region that is located 4 kilobases upstream of the red pigment gene and 43 kilobases upstream of the nearest green pigment gene; this 579-base pair region is essential for the activity of both pigment genes.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Nathans, J -- Davenport, C M -- Maumenee, I H -- Lewis, R A -- Hejtmancik, J F -- Litt, M -- Lovrien, E -- Weleber, R -- Bachynski, B -- Zwas, F -- New York, N.Y. -- Science. 1989 Aug 25;245(4920):831-8.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Molecular Biology and Genetics, Wilmer Ophthalmologic Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/2788922" target="_blank"〉PubMed〈/a〉
    Keywords: Adolescent ; Adult ; Base Sequence ; Child ; Child, Preschool ; Chromosome Deletion ; Color Vision Defects/*genetics ; DNA/analysis ; Female ; Humans ; Male ; Molecular Sequence Data ; Mutation ; Nucleic Acid Hybridization ; Retinal Pigments/genetics ; Thalassemia/genetics ; X Chromosome
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Oxford, UK : Blackwell Publishing Ltd
    Annals of the New York Academy of Sciences 453 (1985), S. 0 
    ISSN: 1749-6632
    Source: Blackwell Publishing Journal Backfiles 1879-2005
    Topics: Natural Sciences in General
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-11-28
    Description: Mutations in ABCA4 cause Stargardt disease and other blinding autosomal recessive retinal disorders. However, sequencing of the complete coding sequence in patients with clinical features of Stargardt disease sometimes fails to detect one or both mutations. For example, among 208 individuals with clear clinical evidence of ABCA4 disease ascertained at a single institution, 28 had only one disease-causing allele identified in the exons and splice junctions of the primary retinal transcript of the gene. Haplotype analysis of these 28 probands revealed 3 haplotypes shared among ten families, suggesting that 18 of the 28 missing alleles were rare enough to be present only once in the cohort. We hypothesized that mutations near rare alternate splice junctions in ABCA4 might cause disease by increasing the probability of mis-splicing at these sites. Next-generation sequencing of RNA extracted from human donor eyes revealed more than a dozen alternate exons that are occasionally incorporated into the ABCA4 transcript in normal human retina. We sequenced the genomic DNA containing 15 of these minor exons in the 28 one-allele subjects and observed five instances of two different variations in the splice signals of exon 36.1 that were not present in normal individuals ( P 〈 10 –6 ). Analysis of RNA obtained from the keratinocytes of patients with these mutations revealed the predicted alternate transcript. This study illustrates the utility of RNA sequence analysis of human donor tissue and patient-derived cell lines to identify mutations that would be undetectable by exome sequencing.
    Print ISSN: 0964-6906
    Electronic ISSN: 1460-2083
    Topics: Biology , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...