ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-04-15
    Description: DNA binding specificities of transcription factors (TFs) are a key component of gene regulatory processes. Underlying mechanisms that explain the highly specific binding of TFs to their genomic target sites are poorly understood. A better understanding of TF−DNA binding requires the ability to quantitatively model TF binding to accessible DNA...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2016-04-08
    Description: : DNAshapeR predicts DNA shape features in an ultra-fast, high-throughput manner from genomic sequencing data. The package takes either nucleotide sequence or genomic coordinates as input and generates various graphical representations for visualization and further analysis. DNAshapeR further encodes DNA sequence and shape features as user-defined combinations of k -mer and DNA shape features. The resulting feature matrices can be readily used as input of various machine learning software packages for further modeling studies. Availability and implementation: The DNAshapeR software package was implemented in the statistical programming language R and is freely available through the Bioconductor project at https://www.bioconductor.org/packages/devel/bioc/html/DNAshapeR.html and at the GitHub developer site, http://tsupeichiu.github.io/DNAshapeR/ . Contact: rohs@usc.edu Supplementary information: Supplementary data are available at Bioinformatics online.
    Print ISSN: 1367-4803
    Electronic ISSN: 1460-2059
    Topics: Biology , Computer Science , Medicine
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-06-23
    Description: We present a method and web server for predicting DNA structural features in a high-throughput (HT) manner for massive sequence data. This approach provides the framework for the integration of DNA sequence and shape analyses in genome-wide studies. The HT methodology uses a sliding-window approach to mine DNA structural information obtained from Monte Carlo simulations. It requires only nucleotide sequence as input and instantly predicts multiple structural features of DNA (minor groove width, roll, propeller twist and helix twist). The results of rigorous validations of the HT predictions based on DNA structures solved by X-ray crystallography and NMR spectroscopy, hydroxyl radical cleavage data, statistical analysis and cross-validation, and molecular dynamics simulations provide strong confidence in this approach. The DNAshape web server is freely available at http://rohslab.cmb.usc.edu/DNAshape/ .
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2013-12-29
    Description: Transcription factor binding sites (TFBSs) are most commonly characterized by the nucleotide preferences at each position of the DNA target. Whereas these sequence motifs are quite accurate descriptions of DNA binding specificities of transcription factors (TFs), proteins recognize DNA as a three-dimensional object. DNA structural features refine the description of TF binding specificities and provide mechanistic insights into protein–DNA recognition. Existing motif databases contain extensive nucleotide sequences identified in binding experiments based on their selection by a TF. To utilize DNA shape information when analysing the DNA binding specificities of TFs, we developed a new tool, the TFBSshape database (available at http://rohslab.cmb.usc.edu/TFBSshape/ ), for calculating DNA structural features from nucleotide sequences provided by motif databases. The TFBSshape database can be used to generate heat maps and quantitative data for DNA structural features (i.e., minor groove width, roll, propeller twist and helix twist) for 739 TF datasets from 23 different species derived from the motif databases JASPAR and UniPROBE. As demonstrated for the basic helix-loop-helix and homeodomain TF families, our TFBSshape database can be used to compare, qualitatively and quantitatively, the DNA binding specificities of closely related TFs and, thus, uncover differential DNA binding specificities that are not apparent from nucleotide sequence alone.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2009-10-30
    Description: The recognition of specific DNA sequences by proteins is thought to depend on two types of mechanism: one that involves the formation of hydrogen bonds with specific bases, primarily in the major groove, and one involving sequence-dependent deformations of the DNA helix. By comprehensively analysing the three-dimensional structures of protein-DNA complexes, here we show that the binding of arginine residues to narrow minor grooves is a widely used mode for protein-DNA recognition. This readout mechanism exploits the phenomenon that narrow minor grooves strongly enhance the negative electrostatic potential of the DNA. The nucleosome core particle offers a prominent example of this effect. Minor-groove narrowing is often associated with the presence of A-tracts, AT-rich sequences that exclude the flexible TpA step. These findings indicate that the ability to detect local variations in DNA shape and electrostatic potential is a general mechanism that enables proteins to use information in the minor groove, which otherwise offers few opportunities for the formation of base-specific hydrogen bonds, to achieve DNA-binding specificity.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793086/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2793086/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Rohs, Remo -- West, Sean M -- Sosinsky, Alona -- Liu, Peng -- Mann, Richard S -- Honig, Barry -- GM54510/GM/NIGMS NIH HHS/ -- R01 GM030518/GM/NIGMS NIH HHS/ -- U54 CA121852/CA/NCI NIH HHS/ -- U54 CA121852-05/CA/NCI NIH HHS/ -- Howard Hughes Medical Institute/ -- England -- Nature. 2009 Oct 29;461(7268):1248-53. doi: 10.1038/nature08473.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Howard Hughes Medical Institute, Center for Computational Biology and Bioinformatics, Department of Biochemistry and Molecular Biophysics, Columbia University, 1130 Saint Nicholas Avenue, New York, New York 10032, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19865164" target="_blank"〉PubMed〈/a〉
    Keywords: AT Rich Sequence/genetics ; Animals ; Arginine/metabolism ; Base Sequence ; DNA/*chemistry/genetics/*metabolism ; DNA-Binding Proteins/chemistry/*metabolism ; Databases, Factual ; Hydrogen Bonding ; Lysine ; *Nucleic Acid Conformation ; Nucleosomes/chemistry/metabolism ; Protein Binding ; Saccharomyces cerevisiae ; Static Electricity
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    Nature Publishing Group (NPG)
    Publication Date: 2011-02-26
    Description: 〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Honig, Barry -- Rohs, Remo -- England -- Nature. 2011 Feb 24;470(7335):472-3. doi: 10.1038/470472a.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/21350476" target="_blank"〉PubMed〈/a〉
    Keywords: *Base Pairing ; DNA/*chemistry/metabolism ; DNA-Binding Proteins/metabolism ; Hydrogen Bonding ; Magnetic Resonance Spectroscopy ; Models, Molecular
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2013-09-26
    Description: The p53 core domain binds to response elements (REs) that contain two continuous half-sites as a cooperative tetramer, but how p53 recognizes discontinuous REs is not well understood. Here we describe the crystal structure of the p53 core domain bound to a naturally occurring RE located at the promoter of the Bcl-2-associated X protein (BAX) gene, which contains a one base-pair insertion between the two half-sites. Surprisingly, p53 forms a tetramer on the BAX-RE that is nearly identical to what has been reported on other REs with a 0-bp spacer. Each p53 dimer of the tetramer binds in register to a half-site and maintains the same protein–DNA interactions as previously observed, and the two dimers retain all the protein–protein contacts without undergoing rotation or translation. To accommodate the additional base pair, the DNA is deformed and partially disordered around the spacer region, resulting in an apparent unwinding and compression, such that the interactions between the dimers are maintained. Furthermore, DNA deformation within the p53-bound BAX-RE is confirmed in solution by site-directed spin labeling measurements. Our results provide a structural insight into the mechanism by which p53 binds to discontinuous sites with one base-pair spacer.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
  • 9
    Publication Date: 2013-10-08
    Description: A p53 hot-spot mutation found frequently in human cancer is the replacement of R273 by histidine or cysteine residues resulting in p53 loss of function as a tumor suppressor. These mutants can be reactivated by the incorporation of second-site suppressor mutations. Here, we present high-resolution crystal structures of the p53 core domains of the cancer-related proteins, the rescued proteins and their complexes with DNA. The structures show that inactivation of p53 results from the incapacity of the mutated residues to form stabilizing interactions with the DNA backbone, and that reactivation is achieved through alternative interactions formed by the suppressor mutations. Detailed structural and computational analysis demonstrates that the rescued p53 complexes are not fully restored in terms of DNA structure and its interface with p53. Contrary to our previously studied wild-type (wt) p53-DNA complexes showing non-canonical Hoogsteen A/T base pairs of the DNA helix that lead to local minor-groove narrowing and enhanced electrostatic interactions with p53, the current structures display Watson–Crick base pairs associated with direct or water-mediated hydrogen bonds with p53 at the minor groove. These findings highlight the pivotal role played by R273 residues in supporting the unique geometry of the DNA target and its sequence-specific complex with p53.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2014-02-28
    Description: The tumor suppressor protein p53 regulates numerous signaling pathways by specifically recognizing diverse p53 response elements (REs). Understanding the mechanisms of p53-DNA interaction requires structural information on p53 REs. However, such information is limited as a 3D structure of any RE in the unbound form is not available yet. Here, site-directed spin labeling was used to probe the solution structures of REs involved in p53 regulation of the p21 and Bax genes. Multiple nanometer distances in the p21-RE and BAX-RE, measured using a nucleotide-independent nitroxide probe and double-electron-electron-resonance spectroscopy, were used to derive molecular models of unbound REs from pools of all-atom structures generated by Monte-Carlo simulations, thus enabling analyses to reveal sequence-dependent DNA shape features of unbound REs in solution. The data revealed distinct RE conformational changes on binding to the p53 core domain, and support the hypothesis that sequence-dependent properties encoded in REs are exploited by p53 to achieve the energetically most favorable mode of deformation, consequently enhancing binding specificity. This work reveals mechanisms of p53-DNA recognition, and establishes a new experimental/computational approach for studying DNA shape in solution that has far-reaching implications for studying protein–DNA interactions.
    Print ISSN: 0305-1048
    Electronic ISSN: 1362-4962
    Topics: Biology
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...