ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-05-15
    Description: Many acute and chronic anaemias, including haemolysis, sepsis and genetic bone marrow failure diseases such as Diamond-Blackfan anaemia, are not treatable with erythropoietin (Epo), because the colony-forming unit erythroid progenitors (CFU-Es) that respond to Epo are either too few in number or are not sensitive enough to Epo to maintain sufficient red blood cell production. Treatment of these anaemias requires a drug that acts at an earlier stage of red cell formation and enhances the formation of Epo-sensitive CFU-E progenitors. Recently, we showed that glucocorticoids specifically stimulate self-renewal of an early erythroid progenitor, burst-forming unit erythroid (BFU-E), and increase the production of terminally differentiated erythroid cells. Here we show that activation of the peroxisome proliferator-activated receptor alpha (PPAR-alpha) by the PPAR-alpha agonists GW7647 and fenofibrate synergizes with the glucocorticoid receptor (GR) to promote BFU-E self-renewal. Over time these agonists greatly increase production of mature red blood cells in cultures of both mouse fetal liver BFU-Es and mobilized human adult CD34(+) peripheral blood progenitors, with a new and effective culture system being used for the human cells that generates normal enucleated reticulocytes. Although Ppara(-/-) mice show no haematological difference from wild-type mice in both normal and phenylhydrazine (PHZ)-induced stress erythropoiesis, PPAR-alpha agonists facilitate recovery of wild-type but not Ppara(-/-) mice from PHZ-induced acute haemolytic anaemia. We also show that PPAR-alpha alleviates anaemia in a mouse model of chronic anaemia. Finally, both in control and corticosteroid-treated BFU-E cells, PPAR-alpha co-occupies many chromatin sites with GR; when activated by PPAR-alpha agonists, additional PPAR-alpha is recruited to GR-adjacent sites and presumably facilitates GR-dependent BFU-E self-renewal. Our discovery of the role of PPAR-alpha agonists in stimulating self-renewal of early erythroid progenitor cells suggests that the clinically tested PPAR-alpha agonists we used may improve the efficacy of corticosteroids in treating Epo-resistant anaemias.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498266/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC4498266/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Lee, Hsiang-Ying -- Gao, Xiaofei -- Barrasa, M Inmaculada -- Li, Hu -- Elmes, Russell R -- Peters, Luanne L -- Lodish, Harvey F -- 2 P01 HL032262-25/HL/NHLBI NIH HHS/ -- DK100692/DK/NIDDK NIH HHS/ -- P01 HL032262/HL/NHLBI NIH HHS/ -- R01 DK100692/DK/NIDDK NIH HHS/ -- England -- Nature. 2015 Jun 25;522(7557):474-7. doi: 10.1038/nature14326. Epub 2015 May 11.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA. ; Center for Individualized Medicine, Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota 55905, USA. ; The Jackson Laboratory, 600 Main Street, Bar Harbor, Maine 04609, USA. ; 1] Whitehead Institute for Biomedical Research, Nine Cambridge Center, Cambridge, Massachusetts 02142, USA [2] Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/25970251" target="_blank"〉PubMed〈/a〉
    Keywords: Acute Disease ; Anemia/drug therapy/metabolism/pathology ; Anemia, Hemolytic/metabolism ; Animals ; Butyrates/pharmacology/therapeutic use ; Cell Culture Techniques ; Cells, Cultured ; Chromatin/genetics/metabolism ; Chronic Disease ; Disease Models, Animal ; Erythroid Precursor Cells/*cytology/drug effects/metabolism ; *Erythropoiesis/drug effects ; Erythropoietin/pharmacology ; Female ; Fenofibrate/pharmacology ; Glucocorticoids/pharmacology ; Humans ; Liver/cytology/drug effects/embryology ; Mice ; PPAR alpha/agonists/deficiency/*metabolism ; Phenylhydrazines/pharmacology ; Phenylurea Compounds/pharmacology/therapeutic use ; Receptors, Glucocorticoid/*metabolism ; Signal Transduction/drug effects
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...