ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1999-10-03
    Description: NASA's Galileo mission to Jupiter and improved Earth-based observing capabilities have allowed major advances in our understanding of Jupiter's moons Io, Europa, Ganymede, and Callisto over the past few years. Particularly exciting findings include the evidence for internal liquid water oceans in Callisto and Europa, detection of a strong intrinsic magnetic field within Ganymede, discovery of high-temperature silicate volcanism on Io, discovery of tenuous oxygen atmospheres at Europa and Ganymede and a tenuous carbon dioxide atmosphere at Callisto, and detection of condensed oxygen on Ganymede. Modeling of landforms seen at resolutions up to 100 times as high as those of Voyager supports the suggestion that tidal heating has played an important role for Io and Europa.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Showman, A P -- Malhotra, R -- New York, N.Y. -- Science. 1999 Oct 1;286(5437):77-84.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Mechanical Engineering, University of Louisville, 215 Sackett Hall, Louisville, KY 40292, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/10506564" target="_blank"〉PubMed〈/a〉
    Keywords: Atmosphere ; *Carbon Dioxide ; Extraterrestrial Environment ; Geological Phenomena ; Geology ; Ice ; *Jupiter ; Magnetics ; *Oxygen ; Surface Properties ; Temperature ; *Water
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2009-02-27
    Description: The main asteroid belt lies between the orbits of Mars and Jupiter, but the region is not uniformly filled with asteroids. There are gaps, known as the Kirkwood gaps, in distinct locations that are associated with orbital resonances with the giant planets; asteroids placed in these locations will follow chaotic orbits and be removed. Here we show that the observed distribution of main belt asteroids does not fill uniformly even those regions that are dynamically stable over the age of the Solar System. We find a pattern of excess depletion of asteroids, particularly just outward of the Kirkwood gaps associated with the 5:2, the 7:3 and the 2:1 Jovian resonances. These features are not accounted for by planetary perturbations in the current structure of the Solar System, but are consistent with dynamical ejection of asteroids by the sweeping of gravitational resonances during the migration of Jupiter and Saturn approximately 4 Gyr ago.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Minton, David A -- Malhotra, Renu -- England -- Nature. 2009 Feb 26;457(7233):1109-11. doi: 10.1038/nature07778.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, 1629 East University Boulevard, Tucson, Arizona 85716, USA. daminton@lpl.arizona.edu〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/19242470" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-09-17
    Description: Insights into the history of the inner solar system can be derived from the impact cratering record of the Moon, Mars, Venus, and Mercury and from the size distributions of asteroid populations. Old craters from a unique period of heavy bombardment that ended approximately 3.8 billion years ago were made by asteroids that were dynamically ejected from the main asteroid belt, possibly due to the orbital migration of the giant planets. The impactors of the past approximately 3.8 billion years have a size distribution quite different from that of the main belt asteroids but very similar to that of near-Earth asteroids.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Strom, Robert G -- Malhotra, Renu -- Ito, Takashi -- Yoshida, Fumi -- Kring, David A -- New York, N.Y. -- Science. 2005 Sep 16;309(5742):1847-50.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Lunar and Planetary Laboratory, University of Arizona, Tucson, AZ 85721, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/16166515" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-04-27
    Description: Next-generation sequencing studies have revealed genome-wide structural variation patterns in cancer, such as chromothripsis and chromoplexy, that do not engage a single discernable driver mutation, and whose clinical relevance is unclear. We devised a robust genomic metric able to identify cancers with a chromotype called tandem duplicator phenotype (TDP) characterized...
    Print ISSN: 0027-8424
    Electronic ISSN: 1091-6490
    Topics: Biology , Medicine , Natural Sciences in General
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2013-02-08
    Description: Blood production is ensured by rare, self-renewing haematopoietic stem cells (HSCs). How HSCs accommodate the diverse cellular stresses associated with their life-long activity remains elusive. Here we identify autophagy as an essential mechanism protecting HSCs from metabolic stress. We show that mouse HSCs, in contrast to their short-lived myeloid progeny, robustly induce autophagy after ex vivo cytokine withdrawal and in vivo calorie restriction. We demonstrate that FOXO3A is critical to maintain a gene expression program that poises HSCs for rapid induction of autophagy upon starvation. Notably, we find that old HSCs retain an intact FOXO3A-driven pro-autophagy gene program, and that ongoing autophagy is needed to mitigate an energy crisis and allow their survival. Our results demonstrate that autophagy is essential for the life-long maintenance of the HSC compartment and for supporting an old, failing blood system.〈br /〉〈br /〉〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579002/" target="_blank"〉〈img src="https://static.pubmed.gov/portal/portal3rc.fcgi/4089621/img/3977009" border="0"〉〈/a〉   〈a href="https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3579002/" target="_blank"〉This paper as free author manuscript - peer-reviewed and accepted for publication〈/a〉〈br /〉〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Warr, Matthew R -- Binnewies, Mikhail -- Flach, Johanna -- Reynaud, Damien -- Garg, Trit -- Malhotra, Ritu -- Debnath, Jayanta -- Passegue, Emmanuelle -- CA126792/CA/NCI NIH HHS/ -- HL092471/HL/NHLBI NIH HHS/ -- R01 CA126792/CA/NCI NIH HHS/ -- R01 CA184014/CA/NCI NIH HHS/ -- R01 HL111266/HL/NHLBI NIH HHS/ -- England -- Nature. 2013 Feb 21;494(7437):323-7. doi: 10.1038/nature11895. Epub 2013 Feb 6.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉The Eli and Edythe Broad Center for Regenerative Medicine and Stem Cell Research, Department of Medicine, Division of Hematology/Oncology, University of California San Francisco, San Francisco, California 94143, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/23389440" target="_blank"〉PubMed〈/a〉
    Keywords: Aging ; Animals ; Apoptosis ; Autophagy/*genetics ; Caloric Restriction ; Cell Aging ; Cell Survival/genetics ; Cytokines/deficiency/metabolism ; Energy Metabolism/*genetics ; Food Deprivation ; Forkhead Transcription Factors/*metabolism ; *Gene Expression Regulation ; Hematopoietic Stem Cells/*cytology/*metabolism ; Homeostasis ; Mice ; Mice, Inbred C57BL ; Stress, Physiological/*genetics
    Print ISSN: 0028-0836
    Electronic ISSN: 1476-4687
    Topics: Biology , Chemistry and Pharmacology , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 1993-01-15
    Description: Single-domain microcrystals of LaC(2) encapsulated within nanoscale polyhedral carbon particles have been synthesized in a carbon arc. Typical particle sizes are on the order of 20 to 40 nanometers. The stoichiometry and phase of the La-containing crystals have been assigned from characteristic lattice spacings observed by high-resolution transmission electron microscopy and energy dispersive spectroscopy (EDS). EDS spectra show that La and C are the only elements present. Characteristic interatomic distances of 3.39 and 2.78 angstroms identify the compound inside the nanoparticle cavities as alpha-LaC(2), the phase of LaC(2) that is stable at room temperature. Bulk alpha-LaC(2) is metallic and hydrolytic. Observation of crystals of pure encapsulated alpha-LaC(2) that were exposed to air for several days before analysis indicates that the LaC(2) is protected from degradation bythe carbon polyhedral shells of the nanoparticles. A high percentage of the carbon nanoparticles have encapsulated LaC(2) single crystals. These carbon-coated metal crystals form a new class of materials that can be protected in their pure or carbide forms and may have interesting and useful properties.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Ruoff, R S -- Lorents, D C -- Chan, B -- Malhotra, R -- Subramoney, S -- New York, N.Y. -- Science. 1993 Jan 15;259(5093):346-8.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17832348" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    facet.materialart.
    Unknown
    American Association for the Advancement of Science (AAAS)
    Publication Date: 1997-01-17
    Description: During the early history of the solar system, it is likely that the outer planets changed their distance from the sun, and hence, their influence on the asteroid belt evolved with time. The gravitational influence of Jupiter and Saturn on the orbital evolution of asteroids in the outer asteroid belt was calculated. The results show that the sweeping of mean motion resonances associated with planetary migration efficiently destabilizes orbits in the outer asteroid belt on a time scale of 10 million years. This mechanism provides an explanation for the observed depletion of asteroids in that region.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Liou -- Malhotra -- New York, N.Y. -- Science. 1997 Jan 17;275(5298):375-7.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉J.-C. Liou, SN3, NASA Johnson Space Center, Houston, TX 77058, USA. R. Malhotra, Lunar and Planetary Institute, Houston, TX 77058, USA.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/8994031" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 1987-11-27
    Description: Laboratory studies of heterogeneous reactions important for ozone depletion over Antarctica are reported. The reaction of chlorine nitrate (ClONO(2)) with H(2)0 and hydrogen chloride (HCl) on surfaces that simulate polar stratospheric clouds [ice and nitric acid (HNO(3))-ice and sulfuric acid] are studied at temperatures relevant to the Antarctic stratosphere. The reaction of ClONO(2) on ice and certain mixtures of HNO(3) and ice proceeded readily. The sticking coefficient of ClONO(2) on ice of 0.009 +/- 0.002 was observed. A reaction produced gas-phase hypochlorous acid (HOCl) and condensed-phase HNO(3); HOC1 underwent a secondary reaction on ice producing dichlorine monoxide (Cl(2)O). In addition to the reaction with H(2)0, ClONO(2) reacted with HCl on ice to form gas-phase chlorine (Cl(2)) and condensed-phase HNO(3.) Essentially all of the HCl in the bulk of the ice can react with ClONO(2) on the ice surface. The gaseous products of the above reactions, HOCl, Cl(2)0, and Cl(2), could readily photolyze in the Antarctic spring to produce active chlorine for ozone depletion. Furthermore, the formation of condensed-phase HNO(3) could serve as a sink for odd nitrogen species that would otherwise scavenge the active chlorine.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Tolbert, M A -- Rossi, M J -- Malhotra, R -- Golden, D M -- New York, N.Y. -- Science. 1987 Nov 27;238(4831):1258-60.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/17744363" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    The @journal of physical chemistry 〈Washington, DC〉 95 (1991), S. 9037-9039 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Physics
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Electronic Resource
    Electronic Resource
    s.l. : American Chemical Society
    Industrial and engineering chemistry 2 (1930), S. 398-401 
    Source: ACS Legacy Archives
    Topics: Chemistry and Pharmacology , Process Engineering, Biotechnology, Nutrition Technology
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...