ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2016-05-07
    Description: In nature, structural specificity in DNA and proteins is encoded differently: In DNA, specificity arises from modular hydrogen bonds in the core of the double helix, whereas in proteins, specificity arises largely from buried hydrophobic packing complemented by irregular peripheral polar interactions. Here, we describe a general approach for designing a wide range of protein homo-oligomers with specificity determined by modular arrays of central hydrogen-bond networks. We use the approach to design dimers, trimers, and tetramers consisting of two concentric rings of helices, including previously not seen triangular, square, and supercoiled topologies. X-ray crystallography confirms that the structures overall, and the hydrogen-bond networks in particular, are nearly identical to the design models, and the networks confer interaction specificity in vivo. The ability to design extensive hydrogen-bond networks with atomic accuracy enables the programming of protein interaction specificity for a broad range of synthetic biology applications; more generally, our results demonstrate that, even with the tremendous diversity observed in nature, there are fundamentally new modes of interaction to be discovered in proteins.〈br /〉〈span class="detail_caption"〉Notes: 〈/span〉Boyken, Scott E -- Chen, Zibo -- Groves, Benjamin -- Langan, Robert A -- Oberdorfer, Gustav -- Ford, Alex -- Gilmore, Jason M -- Xu, Chunfu -- DiMaio, Frank -- Pereira, Jose Henrique -- Sankaran, Banumathi -- Seelig, Georg -- Zwart, Peter H -- Baker, David -- Howard Hughes Medical Institute/ -- New York, N.Y. -- Science. 2016 May 6;352(6286):680-7. doi: 10.1126/science.aad8865.〈br /〉〈span class="detail_caption"〉Author address: 〈/span〉Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Graduate Program in Biological Physics, Structure, and Design, University of Washington, Seattle, WA 98195, USA. ; Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Department of Computer Science and Engineering, University of Washington, Seattle, WA 98195, USA. ; Institute of Molecular Biosciences, University of Graz, Humboldtstrasse 50/3, 8010-Graz, Austria. Joint BioEnergy Institute, Emeryville, CA 94608, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. ; Department of Electrical Engineering, University of Washington, Seattle, WA 98195, USA. Berkeley Center for Structural Biology, Molecular Biophysics and Integrated Bioimaging, Lawrence Berkeley Laboratory, 1 Cyclotron Road, Berkeley, CA 94720, USA. ; Physical Biosciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA. The Center for Advanced Mathematics for Energy Research Applications, Lawrence Berkeley National Laboratories, 1 Cyclotron Road, Berkeley, CA 94720, USA. ; Department of Biochemistry, University of Washington, Seattle, WA 98195, USA. Institute for Protein Design, University of Washington, Seattle, WA 98195, USA. Howard Hughes Medical Institute, University of Washington, Seattle, WA 98195, USA. dabaker@u.washington.edu.〈br /〉〈span class="detail_caption"〉Record origin:〈/span〉 〈a href="http://www.ncbi.nlm.nih.gov/pubmed/27151862" target="_blank"〉PubMed〈/a〉
    Print ISSN: 0036-8075
    Electronic ISSN: 1095-9203
    Topics: Biology , Chemistry and Pharmacology , Computer Science , Medicine , Natural Sciences in General , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...