ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2017-09-27
    Description: The Global Positioning System has long been hailed as the wave of the future for autonomous on-board navigation of low Earth orbiting spacecraft despite the fact that relatively few spacecraft have actually employed it for this purpose. While several missions operated out of the Goddard Space Flight Center have flown GPS receivers on board, the New Millenium Program (NMP) Earth Orbiting-1 (EO-1) spacecraft is the first to employ GPS for active, autonomous on-board navigation. Since EO-1 was designed to employ GPS as its primary source of the navigation ephemeris, special care had to be taken during the integration phase of spacecraft construction to assure proper performance. This paper is a discussion of that process: a brief overview of how the GPS works, how it fits into the design of the EO-1 Attitude Control System (ACS), the steps taken to integrate the system into the EO-1 spacecraft, the ultimate on-orbit performance during launch and early operations of the EO-1 mission and the performance of the on-board GPS ephemeris versus the ground based ephemeris. Conclusions will include a discussion of the lessons learned.
    Keywords: Aircraft Communications and Navigation
    Type: 2001 Flight Mechanics Symposium; 423-441; NASA/CP-2001-209986
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-06
    Description: With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 3 - 4 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.
    Keywords: Spacecraft Design, Testing and Performance
    Type: New Concepts for Far-Infrared and Submillimeter Space Astronomy; 463-471; NASA/CP-2003-212233
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-13
    Description: With the success of the Hubble Space Telescope, it has become apparent that new frontiers of science and discovery are made every time an improvement in imaging resolution is made. For the HST working primarily in the visible and near-visible spectrum, this meant designing, building, and launching a primary mirror approximately three meters in diameter. Conventional thinking tells us that accomplishing a comparable improvement in resolution at longer wavelengths for Earth and Space Science applications requires a corresponding increase in the size of the primary mirror. For wavelengths in the sub-millimeter range, a very large telescope with an effective aperture in excess of one kilometer in diameter would be needed to obtain high quality angular resolution. Realistically a single aperture this large is practically impossible. Fortunately such large apertures can be constructed synthetically. Possibly as few as three 34 meter diameter mirrors flying in precision formation could be used to collect light at these longer wavelengths permitting not only very large virtual aperture science to be carried out, but high-resolution interferometry as well. To ensure the longest possible mission duration, a system of tethered spacecraft will be needed to mitigate the need for a great deal of propellant. A spin-stabilized, tethered formation will likely meet these requirements. Several configurations have been proposed which possibly meet the needs of the Space Science community. This paper discusses two of them, weighing the relative pros and cons of each concept. The ultimate goal being to settle on a configuration which combines the best features of structure, tethers, and formation flying to meet the ambitious requirements necessary to make future large synthetic aperture and interferometric science missions successful.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AIAA Space 2001 Conference; Aug 27, 2001 - Aug 31, 2001; Unknown
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-07-20
    Description: The Solar TErrestrial RElations Observatory (STEREO) was originally designed as a two- to five-year heliocentric orbit mission to study coronal mass ejections (CMEs), solar energetic particles (SEPs), and the solar wind. After over ten years of continuous science data collection, the twin NASA STEREO observatories have significantly advanced the understanding of Heliophysics. This mission was the first to image CMEs all the way from the Sun to Earth and to observe the entire sphere of the Sun at one time. STEREO has demonstrated the importance of a point of view beyond the Sun-Earth line to significantly improve CME arrival time estimates and in understanding CME structure and trajectories and the longitudinal distribution of SEPs. STEREO was also the first to use one launch vehicle to insert two spacecraft into opposing heliocentric orbits, undergo a 3.5-month-long superior solar conjunction, implement unattended daily science operations on two deep space observatories, maintain 7 arcsec continuous pointing without gyros, and detect and attempt to recover a spacecraft after a 22-month long communications anomaly at a range of 2 AU (Astronomical Units). This paper discusses the significant performance results after the first ten years of operations of the STEREO mission from its journey around the Sun.
    Keywords: Solar Physics
    Type: GSFC-E-DAA-TN63025 , IEEE Aerospace Conference (AeroConf 2018); 4ý11 Mar. 2018; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-18
    Description: Global Positioning System (GPS) simulation is an important activity in the development or qualification of GPS signal receivers for space flight. Because a GPS simulator is a critical resource it is highly desirable to develop a set of field operational procedures to supplement the basic procedures provided by most simulator vendors. Validated field procedures allow better utilization of the GPS simulator in the development of new test scenarios and simulation operations. These procedures expedite simulation scenario development while resulting in scenarios that are more representative of the true design, as well as enabling construction of more complex simulations than previously possible, for example, spacecraft maneuvers. One difficulty in the development of a simulation scenario is specifying various modes of test vehicle motion and associated maneuvers requiring that a user specify some (but not all) of a few closely related simulation parameters. Currently this can only be done by trial and error. A stand-alone procedure that implements the simulator maneuver motion equations and solves for the motion profile transient times, jerk and acceleration would be of considerable value. Another procedure would permit the specification of some configuration parameters that would determine the simulated GPS signal composition. The resulting signal navigation message, for example, would force the receiver under test to use only the intended C-code component of the simulated GPS signal. A representative class of GPS simulation-related field operational procedures is described in this paper. These procedures were developed and used in support of GPS integration and testing for many successful spacecraft missions such as SAC-A, EO-1, AMSAT, VCL, SeaStar, sounding rockets, and by using the industry standard Spirent Global Simulation Systems Incorporated (GSSI) STR series simulators.
    Keywords: Aircraft Communications and Navigation
    Type: 2002 Institute of Navigation 58th Annual Meeting; Jun 24, 2002 - Jun 26, 2002; Albuquerque, NM; United States
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: The Solar TErrestrial RElations Observatory (STEREO) was originally designed as a two to five year heliocentric orbit mission to study coronal mass ejections (CMEs), solar energetic particles (SEPs), and the solar wind. After over ten years of continuous science data collection, the twin NASA STEREO observatories have significantly advanced the understanding of Heliophysics. This mission was the first to image CMEs all the way from the Sun to Earth and to observe the entire sphere of the Sun at one time. STEREO has demonstrated the importance of a point of view beyond the Sun-Earth line to significantly improve CME arrival time estimates and in understanding CME structure and trajectories and the longitudinal distribution of SEPs. STEREO was also the first to use one launch vehicle to insert two spacecraft into opposing heliocentric orbits, undergo a 3.5 month long superior solar conjunction, implement unattended daily science operations on two deep space observatories, maintain 7 arcsec continuous pointing without gyros, and detect and attempt to recover a spacecraft after a 22-month long communications anomaly at a range of 2 AU. This paper discusses the significant performance results after the first ten years of operations of the STEREO mission from its journey around the Sun.
    Keywords: Astronomy; Solar Physics
    Type: GSFC-E-DAA-TN49226 , 2018 IEEE Aerospace Conference; Mar 03, 2018 - Mar 10, 2018; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-08-28
    Description: The present invention is a GPS system for navigation and attitude determination, comprising a sensor array including a convex hemispherical mounting structure having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces for receiving signals from space vehicles of a GPS constellation. The present invention also includes a receiver for collecting the signals and making navigation and attitude determinations. In an alternate embodiment the present invention may include two opposing convex hemispherical mounting structures, each of the mounting structures having a plurality of mounting surfaces, and a plurality of antennas mounted to the mounting surfaces.
    Keywords: Astrodynamics
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: The Sub-millimeter Probe of the Evolution of Cosmic Structure (SPECS) is a bold new mission concept designed to address fundamental questions about the Universe, including how the first stars formed from primordial material, and the first galaxies from pre-galactic structures, how the galaxies evolve over time, and what the cosmic history of energy release, heavy element synthesis, and dust formation is. Half of the luminosity and 98% of the post Big-Bang photons exit in the sub-millimeter range. The spectrum of our own Milky Way Galaxy shows this, and many galaxies have even more pronounced long-wavelength emissions. There can be no doubt that revolutionary science will be enabled when we have tools to study the sub-millimeter sky with Hubble- Space-Telescope-class resolution and sensitivity. Ideally, a very large telescope with an effective aperture approaching one kilometer in diameter would be needed to obtain such high quality angular resolution at these long wavelengths. However, a single aperture one kilometer in diameter would not only be very difficult to build and maintain at the cryogenic temperatures required for good seeing, but could actually turn out to be serious overkill. Because cosmic sub-millimeter photons are plentiful and the new detectors will be sensitive, the observations needed to address the questions posed above can be made with an interferometer using well established aperture synthesis techniques. Possibly as few as three 3-4 meter diameter mirrors flying in precision formation could be used to collect the light. To mitigate the need for a great deal of propellant, tethers may be needed as well. A spin-stabilized, tethered formation is a possible configuration requiring a more advanced form of formation flying controller, where dynamics are coupled due to the existence of the tethers between nodes in the formation network. The paper presents one such concept, a proposed configuration for a mission concept which combines the best features of structure, tethers and formation flying to meet the ambitious requirements necessary to make a future SPECS mission a success.
    Keywords: Spacecraft Design, Testing and Performance
    Type: AAS-00-015 , Guidance and Control Conference; Feb 02, 2000 - Feb 06, 2000; Breckenridge, CO; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: An entirely new sensor approach for attitude determination using Global Positioning System (GPS) signals is developed. The concept involves the use of multiple GPS antenna elements arrayed on a single sensor head to provide maximum GPS space vehicle availability. A number of sensor element configurations are discussed. In addition to the navigation function, the array is used to find which GPS space vehicles are within the field-of-view of each antenna element. Attitude determination is performed by considering the sightline vectors of the found GPS space vehicles together with the fixed boresight vectors of the individual antenna elements. This approach has clear advantages over the standard differential carrier-phase approach. First, errors induced by multipath effects can be significantly reduced or eliminated altogether. Also, integer ambiguity resolution is not required, nor do line biases need to be determined through costly and cumbersome self-surveys. Furthermore, the new sensor does not require individual antennas to be physically separated to form interferometric baselines to determine attitude. Finally, development potential of the new sensor is limited only by antenna and receiver technology development unlike the physical limitations of the current interferometric attitude determination scheme. Simulation results indicate that accuracies of about 1 degree (3 omega) are possible.
    Keywords: Aircraft Communications and Navigation
    Type: Navigation and Control Conference; Aug 10, 1998 - Aug 12, 1998; Boston, MA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: With its long duration and high gain antenna (HGA) feed thermal constraint; the NASA Solar-TErestrial RElations Observatory (STEREO) solar conjunction mission phase is quite unique to deep space operations. Originally designed for a two year heliocentric orbit mission to primarily study coronal mass ejection propagation, after 8 years of continuous science data collection, the twin STEREO observatories entered the solar conjunction mission phase, for which they were not designed. Nine months before entering conjunction, an unforeseen thermal constraint threatened to stop daily communications and science data collection for 15months. With a 3.5 month long communication blackout from the superior solar conjunction, without ground commands, each observatory will reset every 3 days, resulting in 35 system resets at an Earth range of 2 AU. As the observatories will be conjoined for the first time in 8 years, a unique opportunity for calibrating the same instruments on identical spacecraft will occur. As each observatory has lost redundancy, and with only a limited fidelity hardware simulator, how can the new observatory configuration be adequately and safely tested on each spacecraft? Without ground commands, how would a 3-axis stabilized spacecraft safely manage the ever accumulating system momentum without using propellant for thrusters? Could science data still be collected for the duration of the solar conjunction mission phase? Would the observatories survive? In its second extended mission, operational resources were limited at best. This paper discusses the solutions to the STEREO superior solar conjunction operational challenges, science data impact, testing, mission operations, results, and lessons learned while implementing.
    Keywords: Engineering (General)
    Type: GSFC-E-DAA-TN36316 , 2017 IEEE Aerospace Conference; Mar 04, 2017 - Mar 11, 2017; Big Sky, MT; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...