ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Springer
    Acta mechanica Sinica 6 (1990), S. 296-302 
    ISSN: 1614-3116
    Keywords: hypersonic separated turbulent flow ; shock wave and turbulent boundary layer interaction ; heat transfer fluctuation ; unsteady shock structure
    Source: Springer Online Journal Archives 1860-2000
    Topics: Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Physics
    Notes: Abstract This paper presents the results of an experimental study of the unsteady nature of a hypersonic separated turbulent flow. The nomimal test conditions were a freestream Mach number of 7.8 and a unit Reynolds number of 3.5×107/m. The separated flow was generated using finite span forward facing steps. An array of flush mounted high spatial resolution and fast response platinum film resistance thermometers was used to make multi-channel measurements of the fluctuating surface heat trtansfer within the separated flow. Conditional sampling analysis of the signals shows that the root of separation shock wave consists of a series of compression wave extending over a streamwise length about one half of the incoming boundary layer thickness. The compression waves converge into a single leading shock beyond the boundary layer. The shock structure is unsteady and undergoes large-scale motion in the streamwise direction. The length scale of the motion is about 22 percent of the upstream influence length of the separation shock wave. There exists a wide band of frequency of oscillations of the shock system. Most of the frequencies are in the range of 1–3 kHz. The heat transfer fluctuates intermittently between the undisturbed level and the disturbed level within the range of motion of the separation shock wave. This intermittent phenomenon is considered as the consequence of the large-scale shock system oscillations. Downstream of the range of shock wave motion there is a separated region where the flow experiences continuous compression and no intermittency phenomenon is observed.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2015-06-04
    Description: In environments that are hostile to Global Navigation Satellites Systems (GNSS), the precision achieved by a mobile light detection and ranging (LiDAR) system (MLS) can deteriorate into the sub-meter or even the meter range due to errors in the positioning and orientation system (POS). This paper proposes a novel least squares collocation (LSC)-based method to improve the accuracy of the MLS in these hostile environments. Through a thorough consideration of the characteristics of POS errors, the proposed LSC-based method effectively corrects these errors using LiDAR control points, thereby improving the accuracy of the MLS. This method is also applied to the calibration of misalignment between the laser scanner and the POS. Several datasets from different scenarios have been adopted in order to evaluate the effectiveness of the proposed method. The results from experiments indicate that this method would represent a significant improvement in terms of the accuracy of the MLS in environments that are essentially hostile to GNSS and is also effective regarding the calibration of misalignment.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2015-09-17
    Description: The uneven illumination phenomenon caused by thin clouds will reduce the quality of remote sensing images, and bring adverse effects to the image interpretation. To remove the effect of thin clouds on images, an uneven illumination correction can be applied. In this paper, an effective uneven illumination correction algorithm is proposed to remove the effect of thin clouds and to restore the ground information of the optical remote sensing image. The imaging model of remote sensing images covered by thin clouds is analyzed. Due to the transmission attenuation, reflection, and scattering, the thin cloud cover usually increases region brightness and reduces saturation and contrast of the image. As a result, a wavelet domain enhancement is performed for the image in Hue-Saturation-Value (HSV) color space. We use images with thin clouds in Wuhan area captured by QuickBird and ZiYuan-3 (ZY-3) satellites for experiments. Three traditional uneven illumination correction algorithms, i.e., multi-scale Retinex (MSR) algorithm, homomorphic filtering (HF)-based algorithm, and wavelet transform-based MASK (WT-MASK) algorithm are performed for comparison. Five indicators, i.e., mean value, standard deviation, information entropy, average gradient, and hue deviation index (HDI) are used to analyze the effect of the algorithms. The experimental results show that the proposed algorithm can effectively eliminate the influences of thin clouds and restore the real color of ground objects under thin clouds.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2016-03-23
    Description: Groundwater is a major source of fresh water in Tianjin Municipality, China. The average rate of groundwater extraction in this area for the last 20 years fluctuates between 0.6 and 0.8 billion cubic meters per year. As a result, significant subsidence has been observed in Tianjin. In this study, C-band Envisat (Environmental Satellite) ASAR (Advanced Synthetic Aperture Radar) images and L-band ALOS (Advanced Land Observing Satellite) PALSAR (Phased Array type L-band Synthetic Aperture Radar) data were employed to recover the Earth’s surface evolution during the period between 2007 and 2009 using InSAR time series techniques. Similar subsidence patterns can be observed in the overlapping area of the ASAR and PALSAR mean velocity maps with a maximum radar line of sight rate of ~170 mm·year−1. The west subsidence is modeled for ground water volume change using Mogi source array. Geological control by major faults on the east subsidence is analyzed. Storage coefficient of the east subsidence is estimated by InSAR displacements and temporal pattern of water level changes. InSAR has proven a useful tool for subsidence monitoring and displacement interpretation associated with underground water usage.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2016-01-06
    Description: This paper presents a robust algorithm to reconstruct power-lines using ALS technology. Point cloud data are automatically classified into five target classes before reconstruction. In order to improve upon the defaults of only using the local shape properties of a single power-line span in traditional methods, the distribution properties of power-line group between two neighbor pylons and contextual information of related pylon objects are used to improve the reconstruction results. First, the distribution properties of power-line sets are detected using a similarity detection method. Based on the probability of neighbor points belonging to the same span, a RANSAC rule based algorithm is then introduced to reconstruct power-lines through two important advancements: reliable initial parameters fitting and efficient candidate sample detection. Our experiments indicate that the proposed method is effective for reconstruction of power-lines from complex scenarios.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019
    Description: One of the unavoidable bottlenecks in the public application of passive signal (e.g., received signal strength, magnetic) fingerprinting-based indoor localization technologies is the extensive human effort that is required to construct and update database for indoor positioning. In this paper, we propose an accurate visual-inertial integrated geo-tagging method that can be used to collect fingerprints and construct the radio map by exploiting the crowdsourced trajectory of smartphone users. By integrating multisource information from the smartphone sensors (e.g., camera, accelerometer, and gyroscope), this system can accurately reconstruct the geometry of trajectories. An algorithm is proposed to estimate the spatial location of trajectories in the reference coordinate system and construct the radio map and geo-tagged image database for indoor positioning. With the help of several initial reference points, this algorithm can be implemented in an unknown indoor environment without any prior knowledge of the floorplan or the initial location of crowdsourced trajectories. The experimental results show that the average calibration error of the fingerprints is 0.67 m. A weighted k-nearest neighbor method (without any optimization) and the image matching method are used to evaluate the performance of constructed multisource database. The average localization error of received signal strength (RSS) based indoor positioning and image based positioning are 3.2 m and 1.2 m, respectively, showing that the quality of the constructed indoor radio map is at the same level as those that were constructed by site surveying. Compared with the traditional site survey based positioning cost, this system can greatly reduce the human labor cost, with the least external information.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2018
    Description: GPS trajectories generated by moving objects provide researchers with an excellent resource for revealing patterns of human activities. Relevant research based on GPS trajectories includes the fields of location-based services, transportation science, and urban studies among others. Research relating to how to obtain GPS data (e.g., GPS data acquisition, GPS data processing) is receiving significant attention because of the availability of GPS data collecting platforms. One such problem is the GPS data classification based on transportation mode. The challenge of classifying trajectories by transportation mode has approached detecting different modes of movement through the application of several strategies. From a GPS data acquisition point of view, this paper macroscopically classifies the transportation mode of GPS data into single-mode and mixed-mode. That means GPS trajectories collected based on one type of transportation mode are regarded as single-mode data; otherwise it is considered as mixed-mode data. The one big difference of classification strategy between single-mode and mixed-mode GPS data is whether we need to recognize the transition points or activity episodes first. Based on this, we systematically review existing classification methods for single-mode and mixed-mode GPS data and introduce the contributions of these methods as well as discuss their unresolved issues to provide directions for future studies in this field. Based on this review and the transportation application at hand, researchers can select the most appropriate method and endeavor to improve them.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2018
    Description: Vision-based lane-detection methods provide low-cost density information about roads for autonomous vehicles. In this paper, we propose a robust and efficient method to expand the application of these methods to cover low-speed environments. First, the reliable region near the vehicle is initialized and a series of rectangular detection regions are dynamically constructed along the road. Then, an improved symmetrical local threshold edge extraction is introduced to extract the edge points of the lane markings based on accurate marking width limitations. In order to meet real-time requirements, a novel Bresenham line voting space is proposed to improve the process of line segment detection. Combined with straight lines, polylines, and curves, the proposed geometric fitting method has the ability to adapt to various road shapes. Finally, different status vectors and Kalman filter transfer matrices are used to track the key points of the linear and nonlinear parts of the lane. The proposed method was tested on a public database and our autonomous platform. The experimental results show that the method is robust and efficient and can meet the real-time requirements of autonomous vehicles.
    Electronic ISSN: 1424-8220
    Topics: Chemistry and Pharmacology , Electrical Engineering, Measurement and Control Technology
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2015-09-10
    Description: Reconstructing three-dimensional model of the pylon from LiDAR (Light Detection And Ranging) point clouds automatically is one of the key techniques for facilities management GIS system of high-voltage nationwide transmission smart grid. This paper presents a model-driven three-dimensional pylon modeling (MD3DM) method using airborne LiDAR data. We start with constructing a parametric model of pylon, based on its actual structure and the characteristics of point clouds data. In this model, a pylon is divided into three parts: pylon legs, pylon body and pylon head. The modeling approach mainly consists of four steps. Firstly, point clouds of individual pylon are detected and segmented from massive high-voltage transmission corridor point clouds automatically. Secondly, an individual pylon is divided into three relatively simple parts in order to reconstruct different parts with different strategies. Its position and direction are extracted by contour analysis of the pylon body in this stage. Thirdly, the geometric features of the pylon head are extracted, from which the head type is derived with a SVM (Support Vector Machine) classifier. After that, the head is constructed by seeking corresponding model from pre-build model library. Finally, the body is modeled by fitting the point cloud to planes. Experiment results on several point clouds data sets from China Southern high-voltage nationwide transmission grid from Yunnan Province to Guangdong Province show that the proposed approach can achieve the goal of automatic three-dimensional modeling of the pylon effectively.
    Electronic ISSN: 2072-4292
    Topics: Architecture, Civil Engineering, Surveying , Geography
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2015-10-13
    Description: Vehicle routing optimization (VRO) designs the best routes to reduce travel cost, energy consumption, and carbon emission. Due to non-deterministic polynomial-time hard (NP-hard) complexity, many VROs involved in real-world applications require too much computing effort. Shortening computing time for VRO is a great challenge for state-of-the-art spatial optimization algorithms. From a spatial-temporal perspective, this paper presents a spatial-temporal Voronoi diagram-based heuristic approach for large-scale vehicle routing problems with time windows (VRPTW). Considering time constraints, a spatial-temporal Voronoi distance is derived from the spatial-temporal Voronoi diagram to find near neighbors in the space-time searching context. A Voronoi distance decay strategy that integrates a time warp operation is proposed to accelerate local search procedures. A spatial-temporal feature-guided search is developed to improve unpromising micro route structures. Experiments on VRPTW benchmarks and real-world instances are conducted to verify performance. The results demonstrate that the proposed approach is competitive with state-of-the-art heuristics and achieves high-quality solutions for large-scale instances of VRPTWs in a short time. This novel approach will contribute to spatial decision support community by developing an effective vehicle routing optimization method for large transportation applications in both public and private sectors.
    Electronic ISSN: 2220-9964
    Topics: Architecture, Civil Engineering, Surveying , Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...