ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Publisher
Years
  • 1
    Publication Date: 2018-09-15
    Description: Minerals, Vol. 8, Pages 406: Comparative Analysis of Attachment to Chalcopyrite of Three Mesophilic Iron and/or Sulfur-Oxidizing Acidophiles Minerals doi: 10.3390/min8090406 Authors: Qian Li Baojun Yang Jianyu Zhu Hao Jiang Jiaokun Li Ruiyong Zhang Wolfgang Sand Adhesion plays an important role in bacterial dissolution of metal sulfides, since the attached cells initiate the dissolution. In addition, biofilms, forming after bacterial attachment, enhance the dissolution. In this study, interactions between initial adhesion force, attachment behavior and copper recovery were comparatively analyzed for Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans during bioleaching of chalcopyrite. The adhesion forces between bacteria and minerals were measured by atomic force microscopy (AFM). L. ferrooxidans had the largest adhesion force and attached best to chalcopyrite, while A. ferrooxidans exhibited the highest bioleaching of chalcopyrite. The results suggest that the biofilm formation, rather than the initial adhesion, is positively correlated with bioleaching efficiency.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI Publishing
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018
    Description: Adhesion plays an important role in bacterial dissolution of metal sulfides, since the attached cells initiate the dissolution. In addition, biofilms, forming after bacterial attachment, enhance the dissolution. In this study, interactions between initial adhesion force, attachment behavior and copper recovery were comparatively analyzed for Acidithiobacillus ferrooxidans, Acidithiobacillus thiooxidans, and Leptospirillum ferrooxidans during bioleaching of chalcopyrite. The adhesion forces between bacteria and minerals were measured by atomic force microscopy (AFM). L. ferrooxidans had the largest adhesion force and attached best to chalcopyrite, while A. ferrooxidans exhibited the highest bioleaching of chalcopyrite. The results suggest that the biofilm formation, rather than the initial adhesion, is positively correlated with bioleaching efficiency.
    Electronic ISSN: 2075-163X
    Topics: Geosciences
    Published by MDPI
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...