ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    Amsterdam : Elsevier
    Journal of Photochemistry and Photobiology B: Biology 22 (1994), S. 59-66 
    ISSN: 1011-1344
    Keywords: Bacillus subtilis spores ; Biofilm ; Biological dosimetry ; Biologically effective dose ; Ozone hole ; Solar UV radiation ; Solar radiation
    Source: Elsevier Journal Backfiles on ScienceDirect 1907 - 2002
    Topics: Biology , Chemistry and Pharmacology , Medicine
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-07-17
    Description: The main objective was to assess the influence of the seasonal stratospheric ozone depletion on the UV climate in Antarctica by using a biological test system. This method is based on the UV sensitivity of a DNA repair-deficient strain of Bacillus subtilis (TKJ 6321). In our field experiment, dried layers of B. subtilis spores on quartz discs were exposed in different seasons in an exposure box open to solar radiation at the German Antarctic Georg von Neumayer Station (70°37' S, 8°22' W). The UV-induced loss of the colony-forming ability was chosen as the biological end point and taken as a measure for the absorbed biologically harmful UV radiation. Inactivation constants were calculated from the resulting dose-response curves. The results of field experiments performed in different seasons indicate strongly season-dependent trend of the daily UV-B level. Exposures performed at extremely depleted ozone concentrations (October 1990) gave higher biologically harmful UV-B levels than expected from the calculated season-dependent trend, which was determined at normal ozone values. These values were similar to values which were measured during the Antarctic summer, indicating that the depleted ozone column thickness has an extreme influence on the biologically harmful UV climate on ground.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , peerRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2019-07-17
    Description: For the first time, a continuous biological dosimetry for cytotoxic solar UV-radiation has been performed in Antarctica. The biological harmful UV-radiation on the ground was measured at the German Antarctic Georg von Neumayer (70°37' S, 80°22' W) from December 1990 to March 1992 using the biofilm technique. The UV-sensitive targets were dried spores of Bacillus subtilis which were immobilized on the film surface. The UV-induced inhibition of biological activity, determined photometrically from the protein synthesized after incubation and staining, was taken as measure for the absorbed UV-dose. Films were exposed in horizontal position for time invervals ranging from 4 days during summer up to 51 and 41 days before and after the polar night respectively. The use of different cut-off filters allowed the calculation of the biologically effective UVA, UVB and the complete UV-radiation (UVA+B). The data were compared with the global radiation and the ozone column thickness indicating an increase of biologically harmful UVB radiation during austral spring at reduced ozone concentrations yielding a radiation amplification factor (RAF) of 1.4, whereas for the total UV(A+B) range the RAF amounted to 0.3.
    Repository Name: EPIC Alfred Wegener Institut
    Type: Article , isiRev
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...