ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 16 (1995), S. 250-254 
    ISSN: 0197-8462
    Keywords: electromagnetic field ; frog auricle ; caffeine ; propranolol ; atropine ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: The combined effects of microwave radiation and some drugs were studied in an isolated frog auricle preparation. The experiments established that exposure to pulse-modulated 915 MHz microwaves for up to 40 min had no effect on either the rate or the amplitude of spontaneous auricle twitches, unless the average absorbed power was high enough to produce preparation heating. Treatment of the preparation with saline containing (0.6-3.0) 10-5 M of propranolol or (0.5-1.5) 10-7 M of atropine altered neither its pacemaker nor its contractile functions; these drugs also had no effect when they were combined with nonthermal microwave irradiation. Caffeine (1 mM) strongly increased the average heart power, which was calculated as the product of twitch rate and amplitude. The caffeine effect appeared to be significantly augmented (by about 15%, P〈0.02) under exposure to burst-type pulsed microwaves (pulse width, 1.5 msec; pause, 2.5 msec; 8 pulses/burst, 16 bursts/s; average SAR, 8-10 W/kg). By itself, this modulation was not effective; the heating of the preparation and saline during exposure was approximately 0.1°C, which could not account for the detected changes. The experimental results demonstrate that caffeine treatment increases the microwave sensitivity of the frog auricle preparation and reveals primarily subthreshold, nonthermal microwave effect. © 1995 Wiley-Liss, Inc.
    Additional Material: 3 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    New York, NY [u.a.] : Wiley-Blackwell
    Bioelectromagnetics 16 (1995), S. 241-249 
    ISSN: 0197-8462
    Keywords: electromagnetic field ; pulse modulati ; frog auricle ; twitch rate ; Life and Medical Sciences ; Occupational Health and Environmental Toxicology
    Source: Wiley InterScience Backfile Collection 1832-2000
    Topics: Biology , Physics
    Notes: Dependence of the microwave effect on modulation parameters (pulse width, duty ratio, and peak intensity) was studied in an isolated frog auricle preparation. The rate and amplitude of spontaneous auricle twitches were measured during and after a 2 min exposure to 915 or 885 MHz microwaves and were compared to preexposure values. The studied ranges of modulation parameters were: pulse width, 10-6-10-2 s; duty ratio, 7:100000, and peak specific absorption rate, 100-3000 W/kg. Combinations of the parameters were chosen by chance, and about 400 various exposure regimes were tested. The experiments established that no regime was effective unless the average microwave power was high enough to induce preparation heating (0.1-0.4°C). The twitch rate instantly increased, and the amplitude decreased, as the temperature rose; similar changes could be induced by equivalent conventional heating. The data provide evidence that the effect of short-term microwave exposure on the isolated heart pacemaker and contractile functions depends on pulse modulation just as much as modulation determines the average absorbed power. These functions demonstrated no specific dependence on exposure parameters such as frequency or power windows. © 1995 Wiley-Liss, Inc.
    Additional Material: 6 Ill.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...