ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2015-06-25
    Description: We investigated the equatorial layered deposits (ELDs) of Arabia Terra, Mars, in Firsoff crater and on the adjacent plateau. We produced a detailed geological map that included a survey of the relative stratigraphic relations and crater count dating. We reconstructed the geometry of the layered deposits and inferred some compositional constraints. ELDs drape and onlap the plateau materials of late Noachian age, while they are unconformably covered by early and middle Amazonian units. ELDs show the presence of polyhydrated sulfates. The bulge morphology of the Firsoff crater ELDs appears to be largely depositional. The ELDs on the plateau display a sheet-drape geometry. ELDs show different characteristics between the crater and the plateau occurrences. In the crater they consist of mounds made of breccia sometimes displaying an apical pit laterally grading into a light-toned layered unit disrupted in a meter-scale polygonal pattern. These units are commonly associated with fissure ridges suggestive of subsurface sources. We interpret the ELDs inside the craters as spring deposits, originated by fluid upwelling through the pathways likely provided by the fractures related to the crater formations, and debouching at the surface through the fissure ridges and the mounds, leading to evaporite precipitation. On the plateau, ELDs consist of rare mounds, flat-lying deposits, and cross-bedded dune fields. We interpret these mounds as possible smaller spring deposits, the flat-lying deposits as playa deposits, and the cross-bedded dune fields as aeolian deposits. Groundwater fluctuations appear to be the major factor controlling ELD deposition.
    Print ISSN: 0016-7606
    Electronic ISSN: 1943-2674
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2014-02-23
    Description: On Earth, most tectonic plates are regenerated and recycled through convection. However, the Nubian and Antarctic plates could be considered as poorly mobile surfaces of various thicknesses that are acting as conductive lids on top of Earth's deeper convective system. Here, volcanoes do not show any linear age progression, at least not for the last 30 myr, but constitute the sites of persistent, focused, long-term magmatic activity rather than a chain of volcanoes, as observed in fast-moving plate plume environments. The melt products vertically accrete into huge accumulations. The residual depleted roots left behind by melting processes cannot be dragged away from the melting loci underlying the volcanoes, which may contribute to producing an unusually shallow depth of oceanic swells. The persistence of a stationary thick depleted lid slows down the efficiency of melting processes at shallow depths. Numerous characteristics of these volcanoes located on motionless plates may be shared by those of the giant volcanoes of the Tharsis province, as Mars is a one-plate planet. The aim of this chapter is to undertake a first inventory of these common features, in order to improve our knowledge of the construction processes of Martian volcanoes.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2014-03-27
    Description: The occurrence and distribution of monogenic eruptive features in volcanic areas testify to the presence of deep-crustal or subcrustal magma reservoirs hydraulically connected to the surface via a fracture network. The spatial distribution of vents can be studied in terms of self-similar (fractal) clustering, described by a fractal exponent D and defined over a range of lengths ( l ) between a lower and upper cutoff, L co and U co , respectively. The computed U co values for several volcanic fields on Earth match the thickness of the crust between vents and magma reservoirs at depth. This analysis can thus be extended to other volcanic fields and volcanoes on rocky planets in the solar system where features such as vents and dykes occur, and for where complementary geophysical data are currently lacking. We applied this method to the Ascraeus Mons volcano on Mars, which presents hundreds of collapse pits similar to those observed on Earth volcanoes that are most likely related to feeder dykes. Based on structural mapping with High Resolution Stereo Camera data at 12 m/px and Context Camera data at 6 m/px mosaics, more than 2300 collapse pits and dyke traces were analysed, revealing two distinct fractal clustered populations. The obtained U co values reveal the presence and likely depth of both a deep magma reservoir ( c. 60 km deep) and a small shallower chamber ( c. 11 km deep). This analysis can help to better constrain the depth and time evolution of volcanic processes on Tharsis, and on terrestrial planets’ volcanoes in general.
    Print ISSN: 0305-8719
    Electronic ISSN: 2041-4927
    Topics: Geosciences
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2019-03-01
    Description: Understanding the origin of the Hesperian-aged sulfate-bearing Equatorial Layered Deposits (ELDs) is crucial to infer Mars' climatic conditions during their formation and to assess their habitability potential. We investigated well-exposed ELDs in Kotido crater (Arabia Terra) and produced a detailed geological map of the crater infill, distinguishing different units within the ELDs based upon their morphological and sedimentological characteristics. The ELDs consist of interbedded light-toned, darker-toned deposits and mounds, associated with possible fissure ridges. Although heavily eroded by younger eolian processes, we interpret these deposits and their associated morphologies as remnants of depositional features and propose that they are the result of fluid, gas, and sediment expulsion processes sourced from the groundwater. The textural characteristics, their depositional geometry, the associated morphologies, and the inferred composition of the light-toned deposits suggest an evaporitic origin, whereas the darker-toned deposits might reflect clastic sedimentary processes, related or not to fluid expulsion and/or residual deposition following dissolution of the evaporites. The relative ratio of fluids, salts, and clasts controlled the depositional process, analogous to what happens in terrestrial playas. The controls on fluid expulsion is interpreted to depend on groundwater emplacement and fluctuations, possibly related to climatic changes, and to the interactions with the fractures related to the crater formation, which allowed the actual upwelling from a pressurized aquifer.
    Print ISSN: 2169-9097
    Electronic ISSN: 2169-9100
    Topics: Geosciences , Physics
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2017-11-01
    Print ISSN: 0019-1035
    Electronic ISSN: 1090-2643
    Topics: Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2020-11-01
    Print ISSN: 0032-0633
    Electronic ISSN: 1873-5088
    Topics: Geosciences , Physics
    Published by Elsevier
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2021-11-08
    Description: We determine the depth of fracture penetration in multiple regions of Enceladus by performing self-similar clustering and length distribution analysis of fractures. The statistical characterization of fault-population attribute, such as length and clustering, provide a productive avenue for exploring deformation rate, stress transmission mode, rheology of the medium, and mechanical stratification of the ice satellite. Through this analysis, we estimate the depth of the mechanical discontinuity of Enceladus’ ice shell that is the depth to which fractures penetrate the brittle ice layer above the ductile one. In this work, we find that for the South Polar Terrain (SPT), the brittle ice shell interested by fracture penetration is about 30 km and corresponds to the total depth of the ice shell because the SPT has a very high thermal gradient and, hence, fractures likely reach the ocean-ice interface. In the other regions analyzed, the depth of fracture penetration increases from 31 to 70 km from the South Pole to northern regions up to 75°.
    Description: Published
    Description: 252-264
    Description: 7T. Struttura della Terra e geodinamica
    Description: JCR Journal
    Keywords: Planetary Geology, faulting, brittle thickness ; fault system analysis in ici satellite (Enceladus)
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2021-11-08
    Description: In: Platz, T., Massironi, M., Byrne, P. K. & Hiesinger, H. (eds) 2015. Volcanism and Tectonism Across the Inner Solar System. Geological Society, London, Special Publications, 401, 203–218.
    Description: The occurrence and distribution of monogenic eruptive features in volcanic areas testify to the presence of deep-crustal or subcrustal magma reservoirs hydraulically connected to the surface via a fracture network. The spatial distribution of vents can be studied in terms of self-similar (fractal) clustering, described by a fractal exponent D and defined over a range of lengths (l) between a lower and upper cutoff, Lco and Uco, respectively. The computed Uco values for several volcanic fields on Earth match the thickness of the crust between vents and magma reservoirs at depth. This analysis can thus be extended to other volcanic fields and volcanoes on rocky planets in the solar system where features such as vents and dykes occur, and for where complementary geophysical data are currently lacking. We applied this method to the Ascraeus Mons volcano on Mars, which presents hundreds of collapse pits similar to those observed on Earth volcanoes that are most likely related to feeder dykes. Based on structural mapping with High Resolution Stereo Camera data at 12 m/px and Context Camera data at 6 m/px mosaics, more than 2300 collapse pits and dyke traces were analysed, revealing two distinct fractal clustered populations. The obtained Uco values reveal the presence and likely depth of both a deep magma reservoir (c. 60 km deep) and a small shallower chamber (c. 11 km deep). This analysis can help to better constrain the depth and time evolution of volcanic processes on Tharsis, and on terrestrial planets’ volcanoes in general.
    Description: Published
    Description: 203-218
    Description: 1V. Storia e struttura dei sistemi vulcanici
    Description: N/A or not JCR
    Description: restricted
    Keywords: Mars, Ascraeus Mons Volcano, plumbing system, fractal distribution ; 05. General::05.09. Miscellaneous::05.09.99. General or miscellaneous
    Repository Name: Istituto Nazionale di Geofisica e Vulcanologia (INGV)
    Type: article
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...