ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
  • 1
    ISSN: 1572-8986
    Keywords: Transport properties ; Ar/C and He/C plasmas ; fullerenes
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract The equilibrium composition and thermodynamic and transport properties of argon; carbon and helium/carbon mixtures are calculated in the temperature range 300–20,000 K. The curves for the composition of mixtures of 50%, carbon in argon or helium are shown fir a pressure of 1.33 × 104 Pa. The calculations for the heat capacity at constant pressure (Cp) and transport coefficients are validated with other studies, for the cases or pure argon and pure helium at a pressure of 105 Pa. The properties of mixtures with various proportions of carbon in argon and helium are calculated. Results are presented at pressures of 105 and 1.33 × 104 Pa, typical of reactors for the synthesis of fullerenes and nanotubes. It is observed that the properties of carbon and mixtures of carbon with a buffer gas (argon or helium) are very different from those of the buffer gas, thus the need to consider this effect in simulations. In general, the mixtures follow trends intermediate to those of the pure gases from which they are composed except for the thermal conductivity which shows a deviation from this tendency in the region between 11,500 and 19,000 K for argon/carbon mixtures and between 8,000 and 12,000 K for helium/carbon mixtures. Also, the electrical conductivity of mixtures of low carbon concentration is very close to that ofpure carbon. A datafile containing the transport properties of mixtures for pressures between 104 and 105 Pa is available free of charge from the authors.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Electronic Resource
    Electronic Resource
    Springer
    Plasma chemistry and plasma processing 18 (1998), S. 285-303 
    ISSN: 1572-8986
    Keywords: Fullerenes ; carbon arc ; plasma process ; modeling
    Source: Springer Online Journal Archives 1860-2000
    Topics: Chemistry and Pharmacology , Mechanical Engineering, Materials Science, Production Engineering, Mining and Metallurgy, Traffic Engineering, Precision Mechanics , Technology
    Notes: Abstract A mathematical model of the carbon arc process for the synthesis of fullerenes (C 60 , C 70 ) is developed. The two-dimensional model solves for the velocities, temperature, and total concentration of carbon species. The net emission coefficient method is used for the radiation term. The carbon species conservation equations consider the evaporation of carbon from the anode, cathode surface deposition, and carbon condensation. The thermodynamic and transport properties are calculated as a function of temperature and carbon mass fraction, using the method of Chapman–Enskog. Erosion rates used by the model are determined experimentally. Calculated fields of the velocities, temperatures, carbon mass fraction and current intensity are presented. Comparison is made of the behavior of the arc at 1 and 4 mm interelectrode gaps, and between operation in argon and in helium. The results of simulations provide a justification for the higher yields observed in helium compared to the argon case.
    Type of Medium: Electronic Resource
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...