ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
Filter
Collection
Years
  • 1
    Publication Date: 2019-06-28
    Description: Wind tunnels typically have higher free stream turbulence levels than are found in flight. Turbulence intensity was measured to be 0.5 percent in the NASA Lewis Icing Research Tunnel (IRT) with the cloud making sprays off and around 2 percent with cloud making equipment on. Turbulence intensity for flight conditions was found to be too low to make meaningful measurements for smooth air. This difference between free stream and wind tunnel conditions has raised questions as to the validity of results obtained in the IRT. One objective of these tests was to determine the effect of free stream turbulence on convective heat transfer for the NASA Lewis LEWICE ice growth prediction code. These tests provide in-flight heat transfer data for a NASA-0012 airfoil with a 533 cm chord. Future tests will measure heat transfer data from the same airfoil in the Lewis Icing Research Tunnel. Roughness was obtained by the attachment of small, 2 mm diameter hemispheres of uniform size to the airfoil in three different patterns. Heat transfer measurements were recorded in flight on the NASA Lewis Twin Otter Icing Research Aircraft. Measurements were taken for the smooth and roughened surfaces at various aircraft speeds and angles of attack up to four degrees. Results are presented as Frossling number versus position on the airfoil for various roughnesses and angles of attack.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: AIAA PAPER 88-0287
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2019-06-28
    Description: Wind tunnels typically have higher free stream turbulence levels than are found in flight. Turbulence intensity was measured to be 0.5 percent in the NASA Lewis Icing Research Tunnel (IRT) with the cloud making sprays off and around 2 percent with cloud making equipment on. Turbulence intensity for flight conditions was found to be too low to make meaningful measurements for smooth air. This difference between free stream and wing tunnel conditions has raised questions as to the validity of results obtained in the IRT. One objective of these tests was to determine the effect of free stream turbulence on convective heat transfer for the NASA Lewis LEWICE ice growth prediction code. These tests provide in-flight heat transfer data for a NASA-0012 airfoil with a 533 cm chord. Future tests will measure heat transfer data from the same airfoil in the Lewis Icing Research Tunnel. Roughness was obtained by the attachment of small, 2 mm diameter hemispheres of uniform size to the airfoil in three different patterns. Heat transfer measurements were recorded in flight on the NASA Lewis Twin Otter Icing Research Aircraft. Measurements were taken for the smooth and roughened surfaces at various aircraft speeds and angles of attack up to four degrees. Results are presented as Frossling number versus position on the airfoil for various roughnesses and angles of attack.
    Keywords: FLUID MECHANICS AND HEAT TRANSFER
    Type: NASA-TM-100284 , E-3924 , NAS 1.15:100284 , AIAA PAPER 88-0287
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...