ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2011-08-24
    Description: The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap splice joints in commercial transport aircraft fuselages. The results revealed that the remaining fatigue life after a proof cycle was longer than that without the proof cycle because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.
    Keywords: STRUCTURAL MECHANICS
    Type: In: Structural integrity of aging airplanes (A93-45772 19-01); p. 115-129.
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2011-08-24
    Description: Impacters of various masses were dropped from various heights onto thick graphite/epoxy filament-wound cylinders. The cylinders represented filament-wound cases made for the booster motors of the Space Shuttle. Tups of various shapes were affixed to the impacters. Some of the cylinders were filled with inert propellant, and some were empty. The cylinders were impacted numerous times around the circumference and then cut into tension coupons, each containing an impact site. The size of the damage and the residual tension strength were measured. For hemispherical tups, strength was reduced as much as 30 percent by nonvisible damage. The damage consisted of matrix cracking and broken fibers. Analytical methods were used to predict the damage and residual tension strength. A factor of safety to account for nonvisible damage was determined. For corner and rod shaped tups, any damage that resulted in strength loss was readily visible.
    Keywords: STRUCTURAL MECHANICS
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 29; 3, Ma
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2005-11-27
    Description: Fatigue crack length relationship with aircraft inspection intervals and structural reinforcement, high strength materials, and aircraft usage effects
    Keywords: STRUCTURAL MECHANICS
    Type: NASA AIRCRAFT SAFETY AND OPERATING PROBL., VOL. 1 1971; P 391-401
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2011-08-19
    Description: The concept of pressure proof testing of fuselage structures with fatigue cracks to insure structural integrity was evaluated from a fracture mechanics viewpoint. A generic analytical and experimental investigation was conducted on uniaxially loaded flat panels with crack configurations and stress levels typical of longitudinal lap-splice joints in commercial transport aircraft fuselage. The results revealed that the remaining fatigue life after a proof test was longer than that without the proof test because of crack growth retardation due to increased crack closure. However, based on a crack length that is slightly less than the critical value at the maximum proof test stress, the minimum assured life or proof test interval must be no more than 550 pressure cycles for a 1.33 proof factor and 1530 pressure cycles for a 1.5 proof factor to prevent in-flight failures.
    Keywords: QUALITY ASSURANCE AND RELIABILITY
    Type: Theoretical and Applied Fracture Mechanics (ISSN 0167-8442); 14; 101-116
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: NASA is developing light-weight graphite/epoxy filament-wound cases (FWC) for the solid rocket motors of the Space Shuttle. The 12-foot-diameter FWC's are about 1.4 inches or more thick. Tests were conducted to determine the tension strength of an FWC after low-velocity impact. Impactors of various kinetic energies, masses, and shapes were used. The conditions that give minimum visual evidence of damage were emphasized. The capability to characterize impact damage with radiography and ultrasonic attenuation was also evaluated. After impact, the specimens were loaded uniaxially in tension to determine residual strengths.
    Keywords: COMPOSITE MATERIALS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2013-08-31
    Description: Static indentation, falling weight, and ballistic impact tests were conducted in clamped plates made of AS4/3501-6 and IM7/8551-7 prepreg tape. The transversely isotropic plates were nominally 7-mm thick. Pendulum and ballistic tests were also conducted on simply supported plates braided with Celion 12000 fibers and 3501-6 epoxy. The 20 degree braided plates were about 5-mm thick. The impactors had spherical or hemispherical shapes with a 12.7 mm diameter. Residual compression strength and damage size were measured. For a given kinetic energy, damage size was least for IM7/8551-7 and greatest for the braided material. Strengths varied inversely with damage size. For a given damage size, strength loss as a fraction of original strength was least for the braided material and greatest for AS4/3501-6 and IM7/8551-7. Strength loss for IM7/8551-7 and AS4/3501-6 was nearly equal. No significant differences were noticed between damage sizes and residual compression strengths for the static indentation, falling weight, and ballistic tests of AS4/3501-6 and IM7/8551-7. For the braided material, sizes of damage were significantly less and compression strengths were significantly more for the falling weight tests than for the ballistic tests.
    Keywords: COMPOSITE MATERIALS
    Type: First NASA Advanced Composites Technology Conference, Part 2; p 513-547
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2011-08-18
    Description: Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with (45/0/-45/90)2S and (45/0/-45/0)2S layups. The buffer strips were parallel to the loading direction. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-90/epoxy on either a one-for-one or a two-for-one basis. In a third case, 0 deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg plies and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different width and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those of plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layup, buffer material, buffer strip width and spacing, and the number of plies of buffer material
    Keywords: STRUCTURAL MECHANICS
    Type: Journal of Composite Materials Supplement; 14; 1, 19; 1980
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2013-08-31
    Description: The building block approach is currently used to design composite structures. With this approach, the data from coupon tests are scaled up to determine the design of a structure. Current standard impact tests and methods of relating test data to other structures are not generally understood and are often used improperly. A methodology is outlined for using impact force as a scale parameter for delamination damage for impacts of simple plates. Dynamic analyses were used to define ranges of plate parameters and impact parameters where quasi-static analyses are valid. These ranges include most low-velocity impacts where the mass of the impacter is large, and the size of the specimen is small. For large-mass impacts of moderately thick (0.35-0.70 cm) laminates, the maximum extent of delamination damage increased with increasing impact force and decreasing specimen thickness. For large-mass impact tests at a given kinetic energy, impact force and hence delamination size depends on specimen size, specimen thickness, boundary conditions, and indenter size and shape. If damage is reported in terms of impact force instead of kinetic energy, large-mass test results can be applied directly to other plates of the same thickness.
    Keywords: COMPOSITE MATERIALS
    Type: FAA, Ninth DOD(NASA)FAA Conference on Fibrous Composites in Structural Design, Volume 2; p 981-99
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2011-08-18
    Description: Graphite/epoxy panels with buffer strips were tested in tension to measure their residual strength with crack-like damage. Panels were made with 45/0/-45/90(2S) and 45/0/450(2S) layups. The buffer strips were parallel to the loading directions. They were made by replacing narrow strips of the 0 deg graphite plies with strips of either 0 deg S-Glass/epoxy or Kevlar-49/epoxy on either a one for one or a two for one basis. In a third case, O deg graphite/epoxy was used as the buffer material and thin, perforated Mylar strips were placed between the 0 deg piles and the cross-plies to weaken the interfaces and thus to isolate the 0 deg plies. Some panels were made with buffer strips of different widths and spacings. The buffer strips arrested the cracks and increased the residual strengths significantly over those plain laminates without buffer strips. A shear-lag type stress analysis correctly predicted the effects of layups, buffer material, buffer strip width and spacing, and the number of plies of buffer material.
    Keywords: AIRCRAFT DESIGN, TESTING AND PERFORMANCE
    Type: Supersonic Cruise Res., 1979, Pt. 2; p 657-673
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2011-08-18
    Description: Fibrous composite materials, such as graphite/epoxy, are light, stiff, and strong. They have great potential for reducing weight in aircraft structures. However, for a realization of this potential, designers will have to know the fracture toughness of composite laminates in order to design damage tolerant structures. In connection with the development of an economical testing procedure, there is a great need for a single fracture toughness parameter which can be used to predict the stress-intensity factor (K(Q)) for all laminates of interest to the designer. Poe and Sova (1980) have derived a general fracture toughness parameter (Qc), which is a material constant. It defines the critical level of strains in the principal load-carryng plies. The present investigation is concerned with the calculation of values for the ratio of Qc and the ultimate tensile strain of the fibers. The obtained data indicate that this ratio is reasonably constant for layups which fail largely by self-similar crack extension.
    Keywords: COMPOSITE MATERIALS
    Type: Engineering Fracture Mechanics; 17; 2, 19; 1983
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...