ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    Publication Date: 2013-08-29
    Description: Cryogenic requirements are examined for new missions to the moon. A comparison is made with previous moon landings and a technology assessment investigates the new requirements for such missions. All of the material is presented in viewgraph format.
    Keywords: PROPELLANTS AND FUELS
    Type: NASA. Lyndon B. Johnson Space Center, Third SEI Technical Interchange: Proceedings; p 522-539
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    Publication Date: 2018-06-02
    Description: A two-phase nitrogen thermosyphon was developed at the NASA Glenn Research Center to efficiently integrate a cryocooler into an insulated liquid-nitrogen-filled tank as part of an advanced development zero-boiloff (ZBO) ground test. NASA Marshall Space Flight Center's (MSFC) Advanced Space Transportation Program supported this test to improve the performance of in-space propulsion system concepts. Recent studies (ref. 1) have shown significant mass reductions and other advantages when incorporating active cooling in a ZBO configuration, enabling consideration of high-performing cryogenic propellants for long-duration applications in space. Active cooling was integrated via a thermosyphon, made of copper, 42 in. (1070 mm) long with an inner diameter of 0.436 in. (11 mm). It was charged with nitrogen to 225 psia at 300 K, which provided a fill ratio of 15 percent. The temperatures and heat flows through the thermosyphon were monitored during the startup phase of the ZBO test, and steady-state tests were conducted over a range of increasing and decreasing heat flows. The results also were compared with the initial design calculations and with results for a similar thermosyphon. They show that the thermal resistance of the thermosyphon was one-half of that expected--0.2 K/W at a heat flow of 8.0 W. The design calculations also showed that this resistance can be made relatively constant over a wider range of heat flows by making the ratio of evaporator area to condenser area 3:1. The better-than-expected results will translate into reduced integration loss for the ZBO concept.
    Keywords: Spacecraft Propulsion and Power
    Type: Research and Technology 2003; NASA/TM-2004-212729
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2018-06-02
    Description: Developments in NASA Glenn Research Center's Centaur work have led to an exciting new cryogenic storage concept being considered for future NASA space missions. With long-duration cryogenic storage, propellants will boil off because of the environmental heating of the tank. To accommodate these losses, extra propellant is required along with larger propellant tanks. Analyses of space transportation concepts show that spacetransfer cryogenic stages with the zero boiloff (ZBO) cryogenic storage concept reduce the stage mass for missions longer than approximately 45 days in low Earth orbit. The ZBO system consists of an active cryocooling system using a cryocooler in addition to traditional passive thermal insulation. Engineers at Glenn analyzed, designed, built, and bench tested a heat exchanger and integration hardware for a large-scale ZBO demonstration for the NASA Marshall Space Flight Center. The heat exchanger, which transfers the heat that enters the tank from the fluid to the cryocooler, must limit the temperature difference across it to limit the cryocooler size and power requirements. With a low temperature difference, the system efficiency is improved. For that temperature difference to be reduced, the thermal conductivity must be as high as possible at liquid hydrogen temperatures, around 25 K (-248 C). In addition, it is important for the heat exchanger to be welded to a stainless steel flange and have enough strength to accommodate piping stress. High-conductivity copper was selected and fabricated, then integrated with the stainless steel piping tee as shown in the cutaway representation. Literature showed that this conductivity might range from 2 to 100 W/cm/K but that is was likely to be around 13 W/cm/K. Unexpectedly, this conductivity was measured to be 23 W/cm/K, which limited the temperature increase along the heat exchanger to just 2 K. This limited temperature increase, compared with the predicted difference of 3.5 K, improves the overall system efficiency by 7.4 percent and limits the expected integration losses to a projected 4 percent with a flight design for liquid hydrogen storage. These results improve the cryocooler integration concept by allowing the cryocooler to operate at a lower input power, or by potentially permitting a smaller cryocooler to be selected.
    Keywords: Propellants and Fuels
    Type: Research and Technology 2000; NASA/TM-2001-210605
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    Publication Date: 2018-06-05
    Description: Tests conducted at the NASA Lewis Research Center's Supplemental Multilayer Insulation Research Facility (SMIRF) demonstrated that a hybrid thermal control system could eliminate boiloff of cryogenic propellants. This is significant because of the substantial mass and cost savings that could be achieved for any long-duration space mission that requires cryogenic propellants. With long-duration cryogenic storage, propellants will boil off because of the environmental heating of the tank. To accommodate these losses, extra propellant is required along with larger propellant tanks. Analysis of Mars mission scenarios using space-transfer cryogenic stages showed that significant savings in propellant mass and tank size could be achieved if it were possible to eliminate or significantly reduce propellant boiloff. Engineers and technicians at NASA Lewis designed, built, and tested a hybrid thermal control system to eliminate or significantly reduce cryogenic propellant boiloff. The system consists of an active cryocooling system using a cryocooler in addition to the traditional passive thermal insulation, as shown in the photo.
    Keywords: Propellants and Fuels
    Type: Research and Technology 1998; NASA/TM-1999-208815
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    Publication Date: 2019-07-13
    Description: Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to the high specific impulse that can be achieved using engines suitable for moving 10's to 100's of metric tons of payload mass to destinations outside of low earth orbit. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several days. The losses can be greatly reduced by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and by the integration of self-supporting multi-layer insulation. The active thermal control technology under development is the integration of the reverse turbo- Brayton cycle cryocooler to the propellant tank through a distributed cooling network of tubes coupled to a shield in the tank insulation and to the tank wall itself. Also, the self-supporting insulation technology was utilized under the shield to obtain needed tank applied LH2 performance. These elements were recently tested at NASA Glenn Research Center in a series of three tests, two that reduced LH2 boil-off and one to eliminate LO2 boil-off. This test series was conducted in a vacuum chamber that replicated the vacuum of space and the temperatures of low Earth orbit. The test results show that LH2 boil-off was reduced 60% by the cryocooler system operating at 90K and that robust LO2 zero boil-off storage, including full tank pressure control was achieved.
    Keywords: Propellants and Fuels; Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN16361 , AIAA/ASME/SAE/ASEE Joint Propulsion Conference; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    Publication Date: 2019-07-13
    Description: No abstract available
    Keywords: Propellants and Fuels
    Type: GRC-E-DAA-TN16903 , 2014 Proplusion & Energy Forum; Jul 28, 2014 - Jul 30, 2014; Cleveland, Ohio; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-07-13
    Description: The development of long duration orbital cryogenic storage systems will require the reduction of heat loads into the storage tank. In the case of liquid hydrogen, complete elimination of the heat load at 20 K is currently impractical due to the limitations in lift available on flight cryocoolers. In order to reduce the heat load, without having to remove heat at 20 K, the concept of Reduced Boil-Off uses cooled shields within the insulation system at approximately 90 K. The development of Load-Bearing Multilayer Insulation (LB-MLI) allowed the 90 K shield with tubing and cryocooler attachments to be suspended within the MLI and still be structurally stable. Coupon testing, both thermal and structural was performed to verify that the LB-MLI should work at the tank applied level. Then tank applied thermal and structural (acoustic) testing was performed to demonstrate the functionality of the LB-MLI as a structural insulation system. The LB-MLI showed no degradation of thermal performance due to the acoustic testing and showed excellent thermal performance when integrated with a 90 K class cryocooler on a liquid hydrogen tank.
    Keywords: Spacecraft Design, Testing and Performance; Fluid Mechanics and Thermodynamics
    Type: GRC-E-DAA-TN15839 , Propulsion and Energy Forum 2014; Jul 28, 2014 - Jul 30, 2014; Cleveland, OH; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    Publication Date: 2019-07-13
    Description: NASA is currently developing cryogenic propellant storage and transfer systems for future space exploration and scientific discovery missions by addressing the need to raise the technology readiness level of cryogenic fluid management technologies. Cryogenic propellants are baselined in many propulsion systems due to their inherently high specific impulse; however, their low boiling points can cause substantial boil-off losses over time. Recent efforts such as the Reduced Boil-off Testing and the Active Thermal Control Scaling Study provide important information on the benefit of an active cooling system applied to LH2 propellant storage. Findings show that zero-boil off technologies can reduce overall mass in LH2 storage systems when low Earth orbit loiter periods extend beyond two months. A significant part of this mass reduction is realized by integrating two stages of cooling: a 20 K stage to intercept heat at the tank surface, and a 90 K stage to reduce the heat entering the less efficient 20 K stage. A missing element in previous studies, which is addressed in this paper, is the development of a direct method for sizing the 90 K cooling stage. Such a method requires calculation of the heat entering both the 90 K and 20 K stages as compared to the overall system masses, and is reliant upon the temperature distribution, performance, and unique design characteristics of the system in question. By utilizing the known conductance of a system without active thermal control, the heat being intercepted by a 90 K stage can be calculated to find the resultant lift and mass of each active thermal control stage. Integral to this is the thermal conductance of the cooling straps and the broad area cooling shield, key parts of the 90 K stage. Additionally, a trade study is performed to show the ability of the 90 K cooling stage to reduce the lift on the 20 K cryocooler stage, which is considerably less developed and efficient than 90 K cryocoolers.
    Keywords: Propellants and Fuels; Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN24566 , Space Cryogenics Workshop; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-07-13
    Description: Cryogenic propellants such as liquid hydrogen (LH2) and liquid oxygen (LO2) are a part of NASA's future space exploration due to their high specific impulse for rocket motors of upper stages suitable for transporting 10s to 100s of metric tons of payload mass to destinations outside of low earth orbit and for their return. However, the low storage temperatures of LH2 and LO2 cause substantial boil-off losses for missions with durations greater than several months. These losses can be eliminated by incorporating high performance cryocooler technology to intercept heat load to the propellant tanks and modulating the cryocooler to control tank pressure. The active thermal control technology being developed by NASA is the reverse turbo-Brayton cycle cryocooler and its integration to the propellant tank through a distributed cooling tubing network coupled to the tank wall. This configuration was recently tested at NASA Glenn Research Center, in a vacuum chamber and cryoshroud that simulated the essential thermal aspects of low Earth orbit, its vacuum and temperature. Testing consisted of three passive tests with the active cryocooler system off, and 7 active tests, with the cryocooler powered up. The test matrix included zero boil-off tests performed at 90 full and 25 full, and several demonstrations at excess cooling capacity and reduced cooling capacity. From this, the tank pressure response with varied cryocooler power inputs was determined. This test series established that the active cooling system integrated with the propellant tank eliminated boil-off and robustly controlled tank pressure.
    Keywords: Fluid Mechanics and Thermodynamics; Spacecraft Propulsion and Power
    Type: GRC-E-DAA-TN24548 , Space Cryogenics Workshop; Jun 24, 2015 - Jun 26, 2015; Phoenix, AZ; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    Publication Date: 2019-07-13
    Description: As interest in the area of in-space zero boil-off cryogenic propellant storage develops, the need to visualize and quantify cryogen behavior during ventless tank self-pressurization and subsequent cool-down with active thermal control has become apparent. During the course of a mission, such as the launch ascent phase, there are periods that power to the active cooling system will be unavailable. In addition, because it is not feasible to install vacuum jackets on large propellant tanks, as is typically done for in-space cryogenic applications for science payloads, instances like the launch ascent heating phase are important to study. Numerous efforts have been made to characterize cryogenic tank pressurization during ventless cryogen storage without active cooling, but few tools exist to model this behavior in a user-friendly environment for general use, and none exist that quantify the marginal active cooling system size needed for power down periods to manage tank pressure response once active cooling is resumed. This paper describes the Transient pressurization with Active Cooling Tool (TACT), which is based on a ventless three-lump homogeneous thermodynamic self-pressurization model1 coupled with an active cooling system estimator. TACT has been designed to estimate the pressurization of a heated but unvented cryogenic tank, assuming an unavailable power period followed by a given cryocooler heat removal rate. By receiving input data on the tank material and geometry, propellant initial conditions, and passive and transient heating rates, a pressurization and recovery profile can be found, which establishes the time needed to return to a designated pressure. This provides the ability to understand the effect that launch ascent and unpowered mission segments have on the size of an active cooling system. A sample of the trends found show that an active cooling system sized for twice the steady state heating rate would results in a reasonable time for tank pressure recovery with ZBO of a liquid oxygen propellant tank.
    Keywords: Fluid Mechanics and Thermodynamics
    Type: E-17923 , Thermal and Fluids Analysis Workshop (TFAWS): Developing Our Future in Aeronautics and Space Through Technology; Aug 15, 2011 - Aug 19, 2011; Newport News, VA; United States
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...