ALBERT

All Library Books, journals and Electronic Records Telegrafenberg

feed icon rss

Your email was sent successfully. Check your inbox.

An error occurred while sending the email. Please try again.

Proceed reservation?

Export
  • 1
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-24
    Keywords: ASTRONAUTICS (GENERAL)
    Type: Journal of Spacecraft and Rockets (ISSN 0022-4650); 29; 260-263
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 2
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2011-08-19
    Description: The several methods presently identified for the reduction of orbital debris populations are broadly classifiable as either preventive or remedial, and fall within distinctive operational regimes. For all particles, (1) in the 250-2000-km altitude band, intelligent sweepers may be used; (2) for large objects, in the 80-250-km altitude band, orbital decay renders removal impractical; (3) for the 250-750-km altitude band, deorbit devices should be used; (4) for 750-2500-km altitude, OMV rendezvous for propulsive deorbit package attachment is foreseeable; and beyond 2500 km, (5) propulsive escape from earth orbit is required.
    Keywords: ASTRODYNAMICS
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 3
    Publication Date: 2013-08-31
    Description: Transportation of people and cargo between low Earth orbit and the surface of the Moon will be one of the most important elements in a lunar base program. This paper identifies some of the important lessons from the space shuttle program and discusses their application in future lunar vehicle operations. Also, some unique challenges in flight planning, training, vehicle servicing, payload integration, and flight control for lunar transportation are outlined. This paper relies heavily on recent studies of space shuttle development and operations with the goal of applying shuttle experience in the design of a practical and efficient lunar transportation system.
    Keywords: LUNAR AND PLANETARY EXPLORATION
    Type: The Second Conference on Lunar Bases and Space Activities of the 21st Century, Volume 1; p 31-34
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 4
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: An orbital debris sweeper is provided for removing particles from orbit which otherwise may impact and damage an orbiting spacecraft. The debris sweeper includes a central sweeper core which carries a debris monitoring unit, and a plurality of large area impact panels rotatable about a central sweeper rotational axis. In response to information from the debris monitoring unit, a computer determines whether individual monitored particles preferably impact one of the rotating panels or pass between the rotating panels. A control unit extends or retracts one or more booms which interconnect the sweeper core and the panels to change the moment of inertia of the sweeper and thereby the rotational velocity of the rotating panels. According to the method of the present invention, the change in panel rotational velocity increases the frequency of particles which desirably impact one of the panels and are thereby removed from orbit, while large particles which may damage the impact panels pass between the trailing edge of one panel and the leading edge of the rotationally succeeding panel.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 5
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: This paper will summarize a range of techniques which have been proposed for controlling the growth of man-made debris in earth orbit. Several techniques developed in studies at the Johnson Space Center will be described in detail. These techniques include the retrieval of inoperative satellites with an orbital maneuvering vehicle and self-disposal devices for satellites and upper stages. Self-disposal devices include propulsive deorbit motors and passive drag-augmentation devices. Concepts for sweeping small debris from the orbital environment will also be described. An evaluation of the technical feasibility and economic practicality of the various control methods will be summarized. In general, methods which prevent the accumulation of large debris objects were found to provide greater promise for control of the debris problem than methods of removing small debris particles.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: AIAA PAPER 90-1364
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 6
    facet.materialart.
    Unknown
    In:  Other Sources
    Publication Date: 2019-06-28
    Description: Various personnel launch systems (PLS) that would serve as one element in a space transportation architecture (which might include heavy-lift cargo vehicles and multirole spacecraft such as the current Space Shuttle) are presented. The PLS might be developed and operated by NASA or it might be attained as a commercial service, completely developed and operated by private enterprise. Consideration is given to a biconic-shaped spacecraft configuration, designed to carry ten people and be reused many times, and intended to be an initial reference design to assist in the overall analysis of operations, maintenance and manufacturing for a PLS.
    Keywords: SPACE TRANSPORTATION
    Type: AIAA PAPER 92-1415
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 7
    Publication Date: 2019-06-28
    Description: Launch vehicle upper stages continue to contribute to future orbital debris scenarios whenever they undergo explosive propulsion system failures, as well as by remaining on orbit as potential collision targets for smaller orbiting bodies. No active measures have been instituted to date in order to remove nonfunctional satellites or spent rocket stages from earth orbit; they are nevertheless conceivable, and classifiable as (1) orbital-maneuvering retrieval; (2) self-disposal; and (3) propulsive deorbit or atmospheric drag augmentation. Illustrative cases and parametric assessments of these methods' feasibility and cost are presented.
    Keywords: ASTRONAUTICS (GENERAL)
    Type: IAF PAPER 89-244
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 8
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-06-28
    Description: A trash removal system for space stations is described. The system is comprised of a disposable trash bag member and an attached, compacted large, lightweight inflatable balloon element. When the trash bag member is filled, the astronaut places the bag member into space through an airlock. Once in the vacuum of space, the balloon element inflates. Due to the large cross-sectional area of the balloon element relative to its mass, the combined balloon element and the trash bag member are slowed by atmospheric drag to a much greater extent than the Space Station's. The balloon element and bag member lose altitude and re-enter the atmosphere, and the elements and contents are destroyed by aerodynamic heating. The novelty of this system is in the unique method of using the vacuum of space and aerodynamic heating to dispose of waste material with a minimum of increase in orbital debris.
    Keywords: SPACECRAFT DESIGN, TESTING AND PERFORMANCE
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 9
    Publication Date: 2019-06-28
    Description: Several Conceptual designs for a simple, rugged Personnel Launch System (PLS) are presented. This system could transport people to and from Low Earth Orbit (LEO) starting in the late 1990's using a new modular Advanced Launch System (ALS) developed for the Space Exploration Initiative (SEI). The PLS is designed to be one element of a new space transportation architecture including heavy-lift cargo vehicles, lunar transfer vehicles, and multiple-role spcecraft such as the current Space Shuttle. The primary role of the PLS would be to deliver crews embarking on lunar or planetary missions to the Space Station, but it would also be used for earth-orbit sortie missions, space rescue missions, and some satellite servicing missions. The PLS design takes advantage of emerging electronic and structures technologies to offer a robust vehicle with autonomous operating and quick turnaround capabilities. Key features include an intact abort capability anywhere in the operating envelope, and elimination of all toxic propellants to streamline ground operations.
    Keywords: LAUNCH VEHICLES AND SPACE VEHICLES
    Type: IAF PAPER 90-161
    Format: text
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
  • 10
    facet.materialart.
    Unknown
    In:  CASI
    Publication Date: 2019-08-28
    Description: An orbital debris sweeper is provided for removing particles from orbit which otherwise may impact and damage an orbiting spacecraft. The debris sweeper includes a central sweeper core which carries a debris monitoring unit, and a plurality of large area impact panels rotatable about a central sweeper rotational axis. In response to information from the debris monitoring unit, a computer determines whether individual monitored particles preferably impact one of the rotating panels or pass between the rotating panels. A control unit extends or retracts one or more booms which interconnect the sweeper core and the panels to change the moment of inertia of the sweeper and thereby the rotational velocity of the rotating panels. According to the method of the present invention, the change in panel rotational velocity increases the frequency of particles which desirably impact one of the panels and are thereby removed from orbit, while large particles which may damage the impact panels pass between the trailing edge of one panel and the leading edge of the rotationally succeeding panel.
    Keywords: Aeronautics (General)
    Format: application/pdf
    Location Call Number Expected Availability
    BibTip Others were also interested in ...
Close ⊗
This website uses cookies and the analysis tool Matomo. More information can be found here...